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1. INTRODUCTION AND NOTATION

Let (2, .9/, P) be a probability space and 1 <s< oc. If R* is endowed
with the euclidean norm, denote by ZL(, o, P, R¥) the system of all
</-measurable X: Q - R* with ||X], <o, where |XI||,=([|X|*dP)" for
I<s<ooand | X]|, =inf{c>0:[X] <c¢ P-ae.}.

Let X, e % (Q, o, P, R*), ne N, be a sequence of independent and iden-
tically distributed (ii.d.) random vectors with positive definite covariance
matrix V. Put S¥=(1//n) V-"A(£"_, (X,— P[X,])), where P[X,]=
| X, dP. Let o, =0(X,,.., X,) be the o-field generated by X,.., X,,. If p € £
(Q, o, P, R), let

d(@, o) :=inf{|@—¥|,: ¥ o -measurable},

the || ||,-distance of ¢ from the subspace %,(L, <, P, R).
Let @ be the distribution function of the standard normal distribution in

R. According to a well-known theorem of Renyi we have for each ¢ € .%
(2, ., P, R),

sup lP[] {S:gl:(/)]—(‘b(t) P[(p:”neN_)O

te R

In this paper we investigate convergence rates of these expressions. In [4,
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Corollary 37, it was shown that, for 1.i.d. X,e A(Q, o, P,R) and o =1,
with Be ./, we have

d,(¢, o,)=0(n""(1gn)’)

=sup |P[ 15 <, 01— @(1) PLo][=0(n""7); p<—3
- =0(n "lglgn); f=—
=0(n "(gn)* ), B> 4,

(1

these convergence rates being optimal. It seems desirable to obtain the
implication (1) for more general functions ¢ than indicator functions. If,
e.g., ¢ is a density of a probability measure Q| with respect to P|.«/,
implication (I) yields a convergence order for sup,. |Q(S¥ <1)— (1)
Unfortunately implication (1) is not true any more for arbitrary densities ¢:
Example 1 shows that even if d,(¢, «/,) =0 for all ne N and X, is standard
normally distributed, implication (I) “extremely” fails. It turns out that we
need suitable moment conditions for ¢ and X, to guarantee implication (I).
We prove that (I) holds if ¢ € £(R) and X,e #(R) where r=co0 if =3
and r>1+1/(s—3) if s>3. Example 5 shows that these moment con-
ditions are essentially optimal. We prove our result for R*-valued X, and
rcp]ace, moreover, I{S:g 0= 1( e S,’,k by fc S,’," with Berrnysseen
functions f: R¥ - [—1, 1] (see Theorem 4). This result yields, e.g., con-
vergence rates for

sup sup |Q(S e C)— P, (C)|

Qe Ce%

where 2 is a family of p-measures dominated by P, 4 is the class of all con-
vex measurable sets of R¥, and @, is the standard normal distribution of
R* (see Corollary 6). Furthermore we prove a corresponding result
(Theorem 7) using the | |,-distance

d @, ,) =inf{|lo —y|,: ¥ <, -measurable }

instead of the | |,-distance d,(¢, <,). Examples show that the convergence
rates in this theorem as well as the moment conditions are optimal. We
often write P(S}<t, ¢) instead of P[1 5., 9] and @, [ f] instead of
_ff(x) @, /(dx). Furthermore F,(x)=P{S¥<x}, xeR* denotes the dis-
tribution function of S*. If X, e %(R2, o/, P, R*) has positive definite
covariance matrix V, we write

p, = P[IV "(X,— PLX,]DI']
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If we write ¢=c¢(.,.,.) the parameters in the bracket are the only
parameters the constant (¢ > 0) depends upon.

In Section 2 we present our Results, in Section 3 we prove the Theorems
of Section 2, and in Section 4 we prove the counterexamples of Section 2.
Section 5 contains all auxiliary lemmata.

2. THE RESULTS

The following Example | shows that implication (1) does not hold for all
pe LR, 4, P, R).

1. ExampLE. Let X,,neN, be i.i.d. and standard normally distributed
in R. Then there exists 0 < ¢ € %, such that

(1) d/(o, o,)=0 forall neN

and

(i)  |P(S*<0,9)—®(0) Plo]l=c nz3.

1
(g n)*
To formulate our results we need the following definition.

2. DEFINITION. Let X, e A(Q, o, P,R¥),neN, be iid. A function
fR* > [ ~1,1] is a Berry-Esseen function iff /' is Borel-measurable and

Uf(ax+b)(Fn—d50.,)(dx) s-f/; for O<a<l,beR,
Vn

where ¢, =c(f, P~ X,).

3. Remark. Let X,e (R, ., P,R*), neN, be iid. with positive
definite covariance matrix.

(i) If £ R¥—=[—1,1] is a Lipschitz function (ie., |f(x)— f(y)l <
¢|x—y|), then f is a Berry-Esseen function with ¢,=c(k) c-p; (see [1,
Theorem 17.8, p. 173]).

(ii) If f:=1,, with C = R* convex and Borel-measurable, then f is a
Berry—Esseen function with ¢, =c(k)- p; (see [1, Corollary 17.2, p. 165]).

4. THEOREM. Let X, € L(R2, .o, P,R*), neN, be iid. with positive
definite covariance matrix, where 3<s<oc. Let Hc 4(Q, o, P, R) with
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SUP, e i ll@ll, < oC. Assume that r=oc if s=3 and r> 14+ 1/(s—=3) if s> 3.
Let F be a family of Berry-Esseen functions f: R* — [ —1, 1] with sup,. »
¢, <oc. Then sup,,. , d\(¢, «,)=0(n *(lgn)’) implies

sup  [PL(f STol=Py,1/]1PLe]l

o FaoeH
=0(n ") y=1 < -3
=0 "“lglgn); r=1 = -3
3

=0(n "lgn) 3y r=1 >~

=0(n *(lgn)"* ) O<a<i.

The convergence rates of the preceding Theorem are optimal. This can
be seen from Examples, given in [4], where even H = {1,} for some fixed
Bed,# =1, k=1 and X, e, . Example 5 will show that the
moment assumptions on ¢ and X, in Theorem 4 are essentially optimal.

A thorough examination of the proof of the «,-inequality of Section 2
shows that if r=1+1/{s—3) (s> 3) Theorem 4 also holds for the follow-
ing cases: O<a<d and PeR;, x=! and f< —s/2; x=34 and
f= —s/2-1/(s—=2).

We do not know whether it holds for the remaining case, i.e., x =1 and
—s2< < —s/2-1/(s—2). The following example shows that for
r<141/(s—3) (s>3) all four convergence orders given in Theorem 4
cannot be achieved any more. This example works with k=1,

F = {l( x.()]}'» and H= {‘/’}'-

5. Exampie. Let s>3 and r<1l+1/(s—3). There exist 1id.
X, e Z(R), ne N, a function ¢ € Z(R), and t,, 1, with 0 <1, <1 <1, such
that

(1) d,(p, «)=0(n *), and
(ii) |P(S¥<0,9)—D(0) Plo]l =cn ™ for sufficiently large n.

This example shows that if r <1+ 1/{s—3) the convergence results of
Theorem 4 are not true for each pair (a, §) with =1, fe R and for each
(2, B) with 1, <a <4, feR.

6. COROLLARY. Let X, € L(Q, .o/, P,R*),neN, be iid with positive
definite covariance matrix where 3<s< . Let 2<P be a family of
p-measures with densities ¢, Q € 2, such that supy. , lopl, <oc. Assume
that r=o0c if s=3 and r> 1+ 1/(s = 3) if s> 3. Then supy. , d(¢py. F,) =
O(n~*(1g n)®y implies
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SUPg e s.cew [Q(SxeC)— D, ,(C)

=0(n ") a=4% p< -3
=0(n "Clglgn); =1 p= -3
=0(n "(lgm)* )y a=4 >3
=0(n *(1gn)"); O<a<i

where % iy the system of all Borel-measurable convex subsets of R¥.

Corollary 6 follows directly from Theorem 4 with H= {¢,: Q€ 2} and
F ={1,:Ce®}. Observe that # is a family of Berry-Esseen functions
with sup{c,: f€ # } <o (see Remark 3).

Another application of Theorem 4 works with H={¢p,: Q€ 2} and
# =1{ [}, where fis a bounded Lipschitz function (see also Corollary 10).

In the following we use the || ||,-distance d.(¢, .%,) instead of d,(¢p, <Z,).
Obviously d,(¢, ,) <d (¢, ). hence the assumption d,(¢, o,)=
O(n~*(g n)*) is stronger than the assumption d,(¢, .«Z,) = O(n *(lg n)*).

If, however, d.(¢p, ,) = O(d,(¢p, «£,))=O(n *(gn)’), then the following
Theorem yields better convergence rates under weaker moment conditions
than Theorem 4.

7. THEOREM. Let X, € L(Q, .o/, P.RY), neN, be iid with positive
definite covariance matrix where 3<s< . Let Hc 282, o, P, R) with
sup, ey l@ll, <oo, where r=1+1/(s—1) (ie, 1jr+1/s=1). Let F be a
family of Berry—Esseen functions - R* — [ —1. 1] with sup, 5 ¢, < . Then
SUp, . 1 d,(@, Z,)=0(n *(Ign)’) implies

sup  |PL(f>S¥)e]—Po,[f]Plo]l

feF.peH
=0(n' a=4, < —1
=0{n 'lglgn); a=1ip=—1
=0(n "Plgn)®*th; a=4p> -1
—0(n *(ign)): 0<a<!

The following Example shows that the convergence rates in Theorem 7
are optimal (even if k=1, H={¢}. and # = {1, o;}).

8. ExamPLE. Let X, e #(R), ne N, be iid. with positive variance and
let »¥=1. Assume that P-X, =P (—X,) and that P-X, is nonatomic.
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Then there exists a function ¢ = ¢, z€ #,(R) such that
(1) dr((p’ CJH):O(H x(lgn)ﬁ)*
and

(i) [P(SF <0, 90)—®(0) Plo]l

>c-n lglgn; if =1 f=—1
>c-n gnyfet if x=1 > ~1
>cn *lgn); if 0<a<!

for sufficiently large n.

The next Example shows that the moment conditions on ¢ and X, in
Theorem 7 cannot be weakened.

9. EXaMPLE. Let s=3 and | <r<1+1/(s—1). Then there exist i.i.d.
X,e Z(R), neN, a function 0< ¢ € #(R), and t with 0 <t <1 such that

(1) d.(¢, o,)=0 for all ne N and
(i) |[P(S¥<0,9)—®0) Ple] =cn ' for sufficiently large ne N.

10. COROLLARY. Let X, e L(Q, o/, P,R*), neN, be iid with positive
definite covariance matrix where 3<s<oo. Let 2<P be a family of
p-measures with densities @, Q € 2, such that supy. , |@yll, <00, where
r+1/s=1.

Then supy. , d(¢y, o,)=0(n *(Ig n)") implies that for each Lipschitz
function fR¥ > [ —1,1]

sup |QLf=S¥]1—®o,[f1I=0(n ') r=3 < 1

et =0(n "lglgn); x=1 p= -1
=0(n gn)’hy; a=45 > -1
=0 *(lgnm)); 0<x<i

Corollary 10 follows directly from Theorem 8 with H= {¢,: Q€ 2| and
F = {f}. Observe that a Lipschitz function is a Berry-Esseen function (see
Remark 3).

Another application of Theorem 8 works with H={¢,: Qe 2| and
F = {1, C=R* convex and measurable} (see also Corollary 6).
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3. PROOF OF THE THEOREMS

In this section we prove two inequalities which directly imply our main
results of Section 2, namely, Theorem 4 and Theorem 7.

(A) d-INEQuUALITY. Let X, € Z(R*), ne N, be iid. with positive definite
covariance matrix V, where 3<s< 0. Let o e L(R) withr= o0 if s=3 and
r>1+1/(s—3) if s>3. Let f:R* > [—1,1] be a Berry-Esseen function.
Then there exists a constant ¢ = c(r, s, k) such that for all j<n/2

PL(f~SF) 0]~ o, L/] P[w]l
<t "’(nw iy (. \,))+2d1<<p, )

\/; v=2

where ¢, is the constant occurring in the definition of a Berry-Esseen
function.

Proof. W.1lg. we may assume that P[X,]=0 and V= I; otherwise con-
sider V""z(X P[X 1), neN.

Put ¢,:=d(o, &,)=inf{|p—y|,: ¥ /,-measurable}. According to
Shintani and Ando [5] there exist .«7,-measurable functions ¢,: 2 — R with

”‘P—(P\Hl :l:l'9 VEN' (‘)
Now let j and »n with j < #/2 be fixed. Put

m0)=0,  &=lol,. (2)
If m(i) < jis defined let
m(i+1)=j, if &, 24, for m(i)<v<) (3
otherwise let
m(i+1)=min{ve N: m(i}<v<j, e, <ienn} (4)

According to the inductive definition of m(i) given in (2)-(4) we obtain
leNuU{0} and 0=m(0)<m(l) < --- <m(l)<m(l+ 1)=j with

8n7(1)<%8m(1rl)’ lgfgi (5)
Emiy <46, O<i<miysv<m(i+1). (6)
By (5) and (2) we have

Frrr(l)<(1/4')Hq)Hlo 0<l<1 (7)
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Put

l/j)}ll (pm(l (pmll 1)» 1 <1</+ 1‘ Where (pml()J:O' (8)

By (1) and (2) we have

P[|l//m(f)”<28mu 1) 1<1</+1 (9)
Let L(y) be the left side of the asserted formula, i.e.,

L) =[P/~ ST) ] =D, Lf 1 PLY ]I

By (8) we have o =@ — ¢, + 277 ).
Since | f| <1 this implies according to (1)

{ + Z L mll) (10)

In the following let ¢, denote constants only depending on r, s, and 4.

Since f is a Berry-Esseen function, we can apply Lemma 2 for each
v=m(i). As 1 <m(Yy<j<n/2 for i=1.. [+ 1 there consequently exists a
constant ¢, such that

| f Sn 1 m(u ().I[./v] !

g /E (;L’+'('] <’_7:lnill+ / ( |Sﬂl(1)> (11)

NAL

AS Y, 1S 4, -measurable, we obtain by (11) for 1 <i</+1

L(lljm(;)) = ‘P[(P(/ 1 ml/) (DOI[/]) l//m(i):H

g(w/EL:—‘F(’I /T(_l)> PLIW ]
A n
+()] \ m( P[tl‘//ﬂl(l)Sﬂl(l)]]' (12)

Put A4, :={|S} >pl" J(s—1)klgv}. For 1 <i</+1 we have
P['d’m((] !11(!)‘]

S p\l\ \/(Si ])k lg m(l) P['wm(l)[] +J |¢m(:)S::(1)‘ dP

Amin
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Hence we obtain from (12) for 1 <i</+ 1

L('//m(n) < \/6% P[an;f]

\/H
1 s
+20 /(s = 1) k*?vﬂv(l Ig(m(i) +2) PLIY i ]
NE
1 ~
+Cl—/_’=\/’n(l.)J |l//m(1) m[1)| dP (13)
\/ I4 A
Now we prove the three relations
IR
i (14)

Z PU[//m(i)‘] g_ ”(/)Hl

i=1

! 2
3 e+ 2] P < (ot + 3 EEE ) )

I+
Z \/ )J ij(:) m(!);dp<(lp ”(/)N

i=1 Amr/l

%)

(16)

From (10) and (13)-(16) we obtain the assertion as
J2 ¢80l <4e 1o,

2
(lw)u ry _lf—) )

and

v 1

/ 1
(uwrr +Ig3e +2 X £ )

—_— ol ]g y
<O+ lg3)plol +2p00 Y [=

— lgv
<(1+/1g3)p <(pi + Z >

y—2

where the last inequality follows from |o|, < @], and p,> 1

Ad (14). We have by (9) and (7)

/41 i+ 1

/
Z P['d/nr(l}’]<2 Z E!HI |):2 Z gm(i)
i=1 i=0

118
<L2lel; X 753 lel

i=0
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Ad ( 15} PUt a,u = \///l lg(ﬂ + 2), Xm({) = P['d/ml[)\ ]’ l g lg l+ ls and
=0 elsewhere. Using that a,/u is decreasing, we have a,<3>*_| (a,/v)
and hence
I+ 1
Y/ m(D)1glm(i) + 2] PLIY ]
i=1
/ 7 H a\
=Y <L n Ly
=1 =1 V=
L oa, ! lg(v +2) <
SDEDRED RN S i (1)
v | =y v=1 =

m(i—1)<v<m(i)and 1 <i<!+ 1, we have according to (9) and (5)

+Xmu+1):P[Wmm‘]+ +P[Wm(/+nu

!
Z xu:xr)l(t'l+
H=v

<28mu ll+ +25m(/;
(18)

%

| 8
<2Pm(1 1)|:1+ Z E:|<§£I7l(ll)'

c=1

Hence we have
if m(i—1)<v<m(iyand | <i<g/+1, then by (18) and (6)

! 8 8
vauggnm(i 1)<§48";

if v=m(iyand 2<i</+ 1, then by (18)

g(v+2) “Z\ ., lg (vv+2)§_8m“” !
<3 @%%T_ZJW 13 (20)
if v=m(1), then by (18) and (2)
lg v+2) Z . lg (»':-2).%80

1 1 2
D2, <ol 21)

8
3 m(1)
). Therefore it remains to prove

Now (17), (19), (20), and (21) imply (15
(16). We prove (16) at first for the case s> 3 and hence r < «©
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Ad (16). Let " fulfil t/#'+ 1/r=1 and s fulfill 1/s"+1/s=1As
r>(s—2)/(s—3) we have

s>2 4 ]; l<s' <rir<s—2. (22)
_

According to (22) there exists a (0, 1) with

s'=a-1+(l—a)r and hence a=

! D (r=s)€(. 1) (23)

Let 1 <a<(4**), then \/a/4*" < 1.
Now put

We prove that

Di= ¥ mi | W Shl dP<csp ol (16),
ie My Amii)

Ei= ¥ /mi) | WSkl dP<eop, ol (16),
ie M| miiy

Obviously (16), and (16), imply (16).
Ad (16),. We have by Holder and Lemma 7 using the definition of M,

DY Sm)ISEN N mally <0 Y (VO Wl (24)

ie My ie My

As 1/a>1 and (1/2) = (1/a)/(1/a—1)=1/(1 —a), we have according to
Holder’s inequality and (23)

P il 1= PUW i) Wil ™ TS PLW it 17 PLY i1

Using (9) and (7) we obtain

2 %8’ )
Wil < (3101, ) PLWml 20 2s)

By (1) and Lemma 5, we have |¢ .||, <2 ¢],; hence (8) implies

Hlpm(i)nr<4”§0“r' (26)
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From (25), (26}, and (23) we obtain

|

Wonll o <8017 s

<cylloll Ly (27)

< lell, 4“,), )

From (24) and (27) we obtain

Losil o \"(; ! ’

D<cop!lol, Y, <a—1—> <cesploll,. (28)
ie Mgy

Hence we have proved (16),.

Ad (16),. Using the Holder inequality we obtain from (26)

Eg Z \/’n( )H "111) 4n1; HW/N(I]“

ie M)

<dllol, T S mi) 1SED a0l (29)

e M,

We have for m>2—as [ | Y| dP<Y/ , P{|Y|>v]—

1Sy 14,017
m Ayl

"Sm| 1:\5 T I)lgm’dP

=[s—1)Igm]™~ l e NS s Dlgm> 1) dP
Y s—1)gm
, y Z ’ Sk :
<2s— 1) (lgm)? P{ —— v}
T Vs—1)lgm
=2s—1)"(gm)y Y P{SE >v" (s~ 1) Jlgm]
vely
and hence according to Lemma 6
1 1

<cllgm) = p, Y =5
10 VENV,, (SAI).,-(lgm)_,_,m(

1o
td

Therefore

1 1
¥ m(.\- 2)/72 (lg m)(.x r)2

'Sm A,,,H:'< Cll ',[)
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and hence
\/m(i) ”Sr*n(i) ! .4,,,[,,Hr'

1 I
,n(l')((.\ 2028 - 122 (lgm(l))(\ r2r

<cppyt (30)

Let § =d(r, s) :=(s—2)/2r' — 1. From (29), (30), and m(/)> a' we obtain

1
E<cslel,p, ST (31)
. iez.‘\:fl (a)) I( "

As 0> 0 (here we use for the first time r>1+1/(s—3)) and a>1, (31)
implies (16),. Thus the result is proven for the case r < oC.

It remains to prove formula (16) for r = oc, s = 3. Therefore, it suffices to
prove (16), and (16), with

My=1{1<i<l+ 1:m(i)<a'}, M ={1<i</+1:m(i)>ad'}

where 1 <a<4?*. Since (16), follows by similar methods as for the case
r < oo it remains to prove (16),. Since

| WSkl dP<2| ISkl dPloll,

Y Ay Amin

we have to prove

S S0 [ ISkl dP<cps. (32)

e M) Y Apiiy

For the dimension k=1 relation
Theorem 2, formula (15)]. Let X, :

(32) was proven in [4, proof of
Sm o X, for v=1.,k Since V
we

2)

(X1 X)), and S = (1//m)
= we have o(X,)=1 and
hvefor\_l Lk

n= |

pa.= P[1X,.°1< p;. Consequently

Z \/m ‘ ISIN‘I r 1‘\5* i |>p]‘\ 2lgmii) dP<(l4p1\

ie M,
Hence (32) follows from

k
* —
ISm(i)I 1_4,,,(,,< Z m(zi\ ,\Sm” ’\l’h\ 2gmii}

using p; . < ps.

This d;-Inequality (A) directly implies Theorem 4: Apply (A) to
J=jn)=[n/lgn].

The followmg d,-Inequality implies Theorem 7: Put j= j(n)=[n/2].
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(B) d-INeQuaLITY. Let X, € LARX), neN, be iid. with positive definite
covariance matrix V, where 3 <s < ov; and let ¢ € L(R) where ljs +1/r=1.
Let f R¥ = [ —1,1] be a Berry-Esseen function. Then there exists a con-
stant ¢ = c(s, k) such that for all j<n/2

\PL(S S*) o]0, [f] PLo]]
<P *4"<u i+ z =10 c/))+2d,<<p, )

Jn
where c, Is the constant occurring in the definition of a Berry—Esseen
function.

Proof. The proof runs similarly as the proof of the d,-Inequality (A).
Let P[X,]=0,V=1
There exist .o7-measurable ¢,: 2 —» R with

lo—oll,=d(p, )= ve N, (1

Let j and n with j < n/2 be fixed. Put

m(0) =0, ey = el (2)

Define m(i) as in (A). Then (5)—(7) of (A) hold with |¢|, instead of |¢];.
Define ,,;, and L{y) as in (A). Then (9)-(12) hold, too. To prove the
assertion it suffices to prove

I+1

8
Y Pl <5 lloll (14

i=1

+1 j
z \/m PU[//HI(I)IJ <‘(Pr Z _f_—> (IS)I
V

vl

f=

z \/m P[W/m(l) miiy ]§(’p (H@H + Z }—"—> (16)’
v

i=1 vl

The proof of (14)" runs as the proof of (14) in (A). To show (15) it suffices
to prove

I+ / £, A )
Z Hl//mmH (‘ oll, + Z ",‘r—)‘ (15)
vl ¥

The proof of (15)” runs as the proof of (15) in (A), if we put au:v";
m(z] Hl//m(/)H



UNIFORM NORMAL APPROXIMATION ORDERS 113

Furthermore we obtain using the Hélder inequality and Lemma 7

I+

Z \/ P[\d’m“) m(l]*] Z /m l) W’mu)“ HS,,,‘,)T

i=1
I+1

<cep, Z \/m Hlpmm”

i=1

Hence (16) follows from (15)".

4. PROOF OF THE EXAMPLES

In this section we give the proofs of the five examples of Section 2.

Proof of Example 1. Let g(t)=(e"?/t(lg1)*) 115, (1), 1€R, and put
p=g<X,. Then 0<pe A(Q, o, P,R) and d,(¢, o,)=0 for all neN. It
remains to prove (ii). Using Lemma 1 we obtain for n >3

[P(ST<0,9)—®0) Ple]

:UgoXIP(S,fso;,g/l)dp—jqb(oy g X, dPl

. jg X, (@(——\/%XJ—CD(O))dP]
-[ st (00— \/1—1[» X, (dn)
Zjﬂr (oo (- Jn]_ K

! J L B0)— D)) du

2 Y o u(lg uy/n—1 )2

1
lg3,/n— lg”

Proof of Example 5. There exist iid. nonatomic X,, neN, with
variance 1, such that P-X,;=Po(—X,) and P{X, >}~ 1/t'(Ig¢)* for
t—oc. Then X, e %(R) and P[X,]=0. As r<1+1/(s—3) we have
s<2+r/(r—1) and hence there exists § with

)

=c

i<o<l and ols—r/(r—1))<l. (1)

By (1) there exists 7, with

(S

<
sO(1—r)+ (1, + 1) r>1. (3)
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Then by (2}

T, =1T5/20 <4 (4)

tol—

Let @, :=(lgv)" v =771 o Loand put 9 =3 ., o,. At first we show
that

pe Z(R). (5)
Since ¢, 20, ve N, are independent and s6 — (t,+ 1) = 0. according to [2.
Lemma 1, p. 358], relation (5) is shown if we prove

Y Ple]l< =. (6)

vl

As

1
P[(P] (lg\' WTP‘X >\'D]

. 1

N 2 2
<c(lgy) o T T

relation (3) implies (6).
Furthermore we have

o, ZP[(p]<(]Z r:HS(an

L=} Vs n

ie., (i) holds. It remains to prove (i1). As P X, =P (- X,)and P~ X, is
nonatomic Lemma 8 yields

0) P, ]— P(S¥<0,¢,)20 for v,nelN. (7)
Now we show that for some v,e N there holds

0) PLo, ] = P(S¥<0,9,)

{ |
20— for vog<v<n' ™, (8)
/gt l o9
LA

To prove (8) we apply Lemma 3 with k=1, a=+", and B={S¥>=a} =
{X,>a} and we obtain for all v with ¢(P- X}’ <v<n'®

0) Plo, ]~ P(SF<0,0,)
=(lgv) v CE(@0) PLX, >~ PIS*<0,X,>"))

5 1
2 ((lg \’)Z vu) tta 4 1) ~ ‘,()P{)(l > ‘_n}.
\//’n
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Since P{X,>t}~1/r'(Igt)? this implies for v, <v < n"? with appropriate
voeN

1 1

> ,
E 2+1 9
vr» +
Vn

Le., (8) is shown.
As 0<1,+1—90<1 by (1), (2) we obtain from (7) and (8) for suf-
ficiently large n

P(0) PLe] - P(ST <0, p)=c;

Le., (i) is fulfilled.

Proof of Example 8. Let a=c(P=X,), where ¢(P-X) is the constant
occurring in Lemma 3. Let 9 = ¢, =Y, @, where ¢, = (1/v' " *)(1g v)’
lis*>,,. Then p € ¥ and

dlo, <)<Y o <Y loll,
|
<) (e v =0(n *(lgn)”). (1)

V

>

Hence (i) is fulfilled.
Applying Lemma 3 to v<n/2 A nfa’ and B= {S*>a} € </,, we obtain
P(0) Pl ] — P(ST<0,0.)
1

v1+1

(Ig v}’ (#(0) P(B) — P(S¥ <0, B))

Zc

1 v
1‘,1+1(lg v)”\/%aP{S;";a}.

Hence there exists ¢; =¢,(Pe X ) and voy=v4(Po X,)e N such that

1

1
P(0) PLo,] = PISF<0.0,) > € —= T (1g v)f
v

if v, <v<[n/2 A nja®] =: j(n). This implies for sufficiently large n

640:4572-3
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j(n)
Y, (@0)PLe,]—P(S¥<0,0,)

v g

=en lglgn; a=1%pf=—1
Zen gt a=4, > 1 (2)
= cyn (g n)”; 0<a<i.

As P-X,=P-(—X,) and P-X, is nonatomic we have by Lemma §
P(S¥<0,S*>a)<iP(S}>=a) and therefore

@(0) PLo,]—P(SF<0,¢0,)=0 forall v,neN. (3)

Hence (2) and (3) directly imply (i1).

Proof of Example 9. Let X,, ne N, be i.i.d. such that P X, has density
p()=(c,/111"* '[1gl711%) 1},...,(17]) with respect to the Lebesgue measure.
Then X, e #(R) and P[X,]=0,neN. Let g(r}=1t""1p,,,(f) and put
p=g<X,. Then 0<¢pe%(R) and d.(¢, ,)=0,neN. Put
7,:=14-(s—s/r), then 0 <7, <i. Hence it suffices to prove

— 14

®(0) P[p] - P(S*<0, ¢) > c—

(gn)’ for sufficiently large n. (n

Using the Theorem of Berry-Esseen and Lemma 1, we have for sufficiently
large n

(0) PLo] - P(ST <0, ¢)
= [ @(0) g(X,)dP— [ g(x,) P(S} <01 54) dP

1

:J"ab(O)g(Xl)dP—jg(le1(-ﬁxl>d1°

ks 1 Cy
> | e0)—@| —— PoX,)(dt) ——%
>J2 [ (0) ( G\/;_—]rﬂg(t)( )(dr) N

- 1 tx‘/r -{s+ 1) d s
>c —&| - t t——=
(]L [¢(0) <D< a\/n~l >] Wk \/;
] o u.v/r —(s+ 1) Cy
ZC»(n_l)l,'ZJrl/Z-[x/r {s+1)] du_____
‘ ! [glul/n—112 " /n
sir-{s + 1) . T

R A . Sy
g3 /n—11> . J/n (gn)y

ie., (1) is proved.

A\
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5. AUXILIARY LEMMATA

In this section we collect all lemmata which are needed for the proofs of
the results and examples of Sections 3 and 4.

1. LeMMA. Let X, e %(R*),neN, be iid with positive definite
covariance matrix. Then we have for x € R* and v, ne N with v<n that

n v X—=
n—yv

is a version of P(S¥<x|.d,)

S*(w

Proof. Direct computation.

2. LeMMA. Let X, € Z(R*), ne N, be iid. with covariance matrix I. Let
f R* = [—1,1] be a Berry—Esseen function. Then there exists a constant
¢ = c(k) such that for v<n

* - Cy o
PS8 = o1l Sk [Wn s }

Proof. According to Lemma 1 we have that for v<n

w—-F, _. x— S*¥w
V n—v anv

is a version of P(S¥ < x|.</,). Therefore

PU-SEIt) = [ 1(5) F, v</ " g | Si‘>-
n—v n—v

Hence we obtain
|[P(foSX]e) -¢oif]|
\ (x) / dxf S*
Vn—v
_%, / PN S;“
n—v n—v
(150, dx_ 0,dx)>‘
nrv
=Uf /"_"x+ffsr (F,, By d
In —v. v f
j /S* D, (dx)|.
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Since f'is a Berry-Esseen function Lemma 4 implies

n—v

+c[1- v |S:a],
n—vy

1.€., the assertion.

3. LEMMA. Let X, € %(R), ne N, be iid with positive variance. Then
there exist a universal constant ¢ and a constant c(P- X,) such that

®(0) P(B)— P(S* <0, B)>c /k/n aP(B)
ifazc(P<X,), Be o with Bc {S¥>a} and ka*<n, 1 <k<n/2.

Proof. The proof runs similar to the proof of Lemma 4 in [4].

4. LEMMA. There exists a constant c=c(k) such that for each
measurable function f-R* - [ —1, +1]
b
[(1 —a)+ I——IJ
a

] (s s b) = £(30) @t <c

for 0<a<l, beR~
Proof. 1t suffices to show that

U flax) ) @ fdx)| <c(l1—a) for O<a<!l (1)

<clb for beR* (2)

( | (FLc+8) = 11x)) @, )

Ad (1), Wlg az1 (choose ¢ 24). We have

[ 100 @)=z [ 1131 00, (5 )

a a
and hence
J 1
a

1
U (ax) = /(x)) o, (d) kwo,,(;y)—wo,,(y)‘ dy.

Therefore it suffices to find constants ¢,, ¢, such that for i<a<1, yeR*

1
ZII‘E(PO,I <E )’> "(Po,/()’)‘ <(1—a)le,+ 6|y oo ¥) (3)
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Let y e R* be fixed and put

<axl.

—

1 1
gla)=— 0o, (— y) ~@oy)  for
d a

As g(1)=0, we obtain from the mean value theorem

lgla)l <(1—a) sup [g'(d)]. (4)

12<¢<1

Furthermore
k 1 1 1
g)=— Eaa <p01< y) +? 9o, (E y>, B V>

1
4
£ o] 1 1 )
= <E)’>+Zﬁ—3¢o,1<z)’>|y| : (5)

Now (4) and (5) imply (3).
Ad (2). Let w.lg [b]<1. We have

‘ | Lfx+6) = 70001 @ )| =

[ 70 L@o0sx =) = po(x)] dx

<[ 100 =b) — 9. x)] dx. (6)

. _ -2 _ —1)2
Using the mean value theorem and e~ V271" o =(/2MIx= 17 for |x| > 1 and
ze[x—b, x], we obtain

l@o(x—b)—@o AX)N< 1Dl sup | A2)l

ze[x -bx]

=1b] sup |z|@g,z)

ze[x—b,x]

<[bl(Ix] +1)  sup  @q,z)

ze[x-bx]
glbk(|x1+1){IE(X)+3"“”'2)(|X1' 1)2} 7
where E= {zeR*:|z| <1}. Now (6) and (7) imply (2).

5. LeMMA. Ler 1l <r< oo and ¢ € £(R). Let sy o/ be a sub-o-field of
of and @, an dy-measurable function with

o —@oll, = di (@, ).
Then
lool, <2llell,.
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Proof. Let Q: Q x o, — [0, 1] be a regular conditional distribution of ¢
given 2. It is well known that ¢,(w) is for P-a.a. we 2 a median of the
p-measure J(-, )| % (see [5]). Hence

Pol@)| <2 | x|Q(dx, 0)  P-ae.
Then the convexity inequality implies

~

1¢o(w)|’<2'j |x|” Q(dx, w)  P-ae. (1)

As | ([ |x]" Q(dx, )) P(dw) = [ |p(w)|" P(dw), integration of (1) yields the
assertion.

6. LEMMA. Let s> 3 and X, e (R*), neN, be iid with P(X,)=0 and
covariance matrix I. Then there exists a constant ¢ = c(s, k) such that

P{|S,ﬂ>t}<ct Ps

w for all >0 with t2>(s—1)lgn.

Proof. Apply Theorem 17.11 of [1] to iid. random variables with
CovX,=land 6=1.

7. LEMMA. Let =2 and let X,,€ (R¥), neN, be iid with P[X,]=0
and covariance matrix 1. Then there exists a constant ¢ = c(s, k) such that

1S, < cpy™.

Proof. For k=1 use Theorem 2 of {2, p. 356] and apply the proof of
Corollary 2 of [2, p. 357]. The case k> 1 follows directly from the case
k=1.

8. LEMMA. Let X, e %(R) be iid with positive variance such that
PoX,=Po(—X,) and Po X, is nonatomic. Then we have for all a >0 and
r,neN

P(S¥<0,8*>a)<3P(SF>a)
Proof. 1t suffices to show
P(S¥<0,S*>a)< P(S¥>0,5S*>a)

The case r = n is trivial. The cases r < n and r > n follow by using Lemma 1.
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