Uniform Normal Approximation Orders for Families of Dominated Measures

DIETER LANDERS

Mathematisches Institut der Universität zu Köln, Wevertal 86-90, D-5000 Köln 41, West Germany

AND

LOTHAR ROGGE

Universität-GH-Duisburg, Postfach 10629, Fachbereich 11/Mathematik, D-4100 Duisburg 1, West Germany

Communicated by P. L. Butzer

Received February 15, 1984

1. INTRODUCTION AND NOTATION

Let (Ω, \mathcal{A}, P) be a probability space and $1 \le s \le \infty$. If \mathbb{R}^k is endowed with the euclidean norm, denote by $\mathcal{L}_s(\Omega, \mathcal{A}, P, \mathbb{R}^k)$ the system of all \mathcal{A} -measurable $X: \Omega \to \mathbb{R}^k$ with $||X||_s < \infty$, where $||X||_s = (\int |X|^s dP)^{1/s}$ for $1 \le s < \infty$ and $||X||_{\infty} = \inf\{c > 0: |X| \le c P$ -a.e.}.

Let $X_n \in \mathcal{L}_2(\Omega, \mathcal{A}, P, \mathbb{R}^k)$, $n \in \mathbb{N}$, be a sequence of independent and identically distributed (i.i.d.) random vectors with positive definite covariance matrix V. Put $S_n^* = (1/\sqrt{n}) V^{-1/2}(\sum_{v=1}^n (X_v - P[X_v]))$, where $P[X_v] = \int X_v dP$. Let $\mathcal{A}_n = \sigma(X_1, ..., X_n)$ be the σ -field generated by $X_1, ..., X_n$. If $\varphi \in \mathcal{L}_1$ $(\Omega, \mathcal{A}, P, \mathbb{R})$, let

$$d_1(\varphi, \mathscr{A}_n) := \inf\{ \|\varphi - \psi\|_1 : \psi \mathscr{A}_n \text{-measurable} \},\$$

the $\| \|_1$ -distance of φ from the subspace $\mathscr{L}_1(\Omega, \mathscr{A}_n, P, \mathbb{R})$.

Let Φ be the distribution function of the standard normal distribution in \mathbb{R} . According to a well-known theorem of Renyi we have for each $\varphi \in \mathscr{L}_1$ $(\Omega, \mathscr{A}, P, \mathbb{R})$,

$$\sup_{t\in\mathbb{R}}|P[1_{\{S_n^*\leqslant t\}}\varphi]-\Phi(t)P[\varphi]|_{n\in\mathbb{N}}\to 0.$$

In this paper we investigate convergence rates of these expressions. In [4,

Corollary 3], it was shown that, for i.i.d. $X_n \in \mathcal{L}_3(\Omega, \mathcal{A}, P, \mathbb{R})$ and $\varphi = 1_B$ with $B \in \mathcal{A}$, we have

$$d_{1}(\varphi, \mathscr{A}_{n}) = O(n^{-1/2}(\lg n)^{\beta})$$

$$\Rightarrow \sup_{t \in \mathbb{R}} |P[1_{\{S_{n}^{*} \leq t\}}\varphi] - \Phi(t) P[\varphi]| = O(n^{-1/2}); \qquad \beta < -\frac{3}{2}$$

$$= O(n^{-1/2} \lg \lg n); \qquad \beta = -\frac{3}{2}$$

$$= O(n^{-1/2}(\lg n)^{\beta+3/2}); \qquad \beta > -\frac{3}{2},$$

(1)

these convergence rates being optimal. It seems desirable to obtain the implication (I) for more general functions φ than indicator functions. If, e.g., φ is a density of a probability measure $Q | \mathscr{A}$ with respect to $P | \mathscr{A}$, implication (I) yields a convergence order for $\sup_{t \in \mathbb{R}} |Q(S_n^* \leq t) - \Phi(t)|$. Unfortunately implication (I) is not true any more for arbitrary densities φ : Example 1 shows that even if $d_1(\varphi, \mathscr{A}_n) = 0$ for all $n \in \mathbb{N}$ and X_n is standard normally distributed, implication (I) "extremely" fails. It turns out that we need suitable moment conditions for φ and X_n to guarantee implication (I). We prove that (I) holds if $\varphi \in \mathscr{L}_r(\mathbb{R})$ and $X_n \in \mathscr{L}_s(\mathbb{R})$ where $r = \infty$ if s = 3 and r > 1 + 1/(s - 3) if s > 3. Example 5 shows that these moment conditions are essentially optimal. We prove our result for \mathbb{R}^k -valued X_n and replace, moreover, $1_{\{S_n^* \leq t\}} = 1_{(-\infty,t]} \circ S_n^*$ by $f \circ S_n^*$ with Berry-Esseen functions $f: \mathbb{R}^k \to [-1, 1]$ (see Theorem 4). This result yields, e.g., convergence rates for

$$\sup_{Q \in \mathcal{Z}} \sup_{C \in \mathscr{C}} |Q(S_n^* \in C) - \Phi_{0,I}(C)|$$

where \mathcal{Q} is a family of *p*-measures dominated by *P*, \mathscr{C} is the class of all convex measurable sets of \mathbb{R}^k , and $\Phi_{0,I}$ is the standard normal distribution of \mathbb{R}^k (see Corollary 6). Furthermore we prove a corresponding result (Theorem 7) using the $\| \|_{r}$ -distance

$$d_r(\varphi, \mathscr{A}_n) := \inf\{ \|\varphi - \psi\|_r : \psi \mathscr{A}_n \text{-measurable} \}$$

instead of the $\| \|_1$ -distance $d_1(\varphi, \mathscr{A}_n)$. Examples show that the convergence rates in this theorem as well as the moment conditions are optimal. We often write $P(S_n^* \leq t, \varphi)$ instead of $P[1_{\{S_n^* \leq t\}}\varphi]$ and $\Phi_{0,I}[f]$ instead of $\int f(x) \Phi_{0,I}(dx)$. Furthermore $F_n(x) = P\{S_n^* \leq x\}, x \in \mathbb{R}^k$, denotes the distribution function of S_n^* . If $X_1 \in \mathscr{L}_s(\Omega, \mathscr{A}, P, \mathbb{R}^k)$ has positive definite covariance matrix V, we write

$$\rho_s := P[|V^{-1/2}(X_1 - P[X_1])|^s].$$

If we write c = c(., ., .) the parameters in the bracket are the only parameters the constant (c > 0) depends upon.

In Section 2 we present our Results, in Section 3 we prove the Theorems of Section 2, and in Section 4 we prove the counterexamples of Section 2. Section 5 contains all auxiliary lemmata.

2. The Results

The following Example 1 shows that implication (1) does not hold for all $\varphi \in \mathcal{L}_1(\Omega, \mathcal{A}, P, \mathbb{R})$.

1. EXAMPLE. Let $X_n, n \in \mathbb{N}$, be i.i.d. and standard normally distributed in \mathbb{R} . Then there exists $0 \leq \varphi \in \mathscr{L}_1$ such that

(i)
$$d_1(\varphi, \mathcal{A}_n) = 0$$
 for all $n \in \mathbb{N}$

and

(ii)
$$|P(S_n^* \le 0, \varphi) - \Phi(0) P[\varphi]| \ge c \frac{1}{(\lg n)^2}, \quad n \ge 3.$$

To formulate our results we need the following definition.

2. DEFINITION. Let $X_n \in \mathcal{L}_3(\Omega, \mathcal{A}, P, \mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. A function $f: \mathbb{R}^k \to [-1, 1]$ is a Berry-Esseen function iff f is Borel-measurable and

$$\left|\int f(ax+b)(F_n - \Phi_{0,I})(dx)\right| \leq \frac{c_f}{\sqrt{n}} \quad \text{for} \quad 0 < a \leq 1, \ b \in \mathbb{R}^k.$$

where $c_f = c(f, P \circ X_1)$.

3. Remark. Let $X_n \in \mathscr{L}_3(\Omega, \mathscr{A}, P, \mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix.

(i) If $f: \mathbb{R}^k \to [-1, 1]$ is a Lipschitz function (i.e., $|f(x) - f(y)| \le c|x - y|$), then f is a Berry-Esseen function with $c_f = c(k) \cdot c \cdot \rho_3$ (see [1, Theorem 17.8, p. 173]).

(ii) If $f := 1_C$, with $C \subset \mathbb{R}^k$ convex and Borel-measurable, then f is a Berry-Esseen function with $c_f = c(k) \cdot \rho_3$ (see [1, Corollary 17.2, p. 165]).

4. THEOREM. Let $X_n \in \mathscr{L}_s(\Omega, \mathscr{A}, P, \mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix, where $3 \leq s < \infty$. Let $H \subset \mathscr{L}_r(\Omega, \mathscr{A}, P, \mathbb{R})$ with

 $\sup_{\varphi \in H} \|\varphi\|_r < \infty. Assume that r = \infty if s = 3 and r > 1 + 1/(s - 3) if s > 3.$ Let \mathscr{F} be a family of Berry-Esseen functions $f: \mathbb{R}^k \to [-1, 1]$ with $\sup_{f \in \mathscr{F}} c_f < \infty$. Then $\sup_{\varphi \in H} d_1(\varphi, \mathscr{A}_n) = O(n^{-\alpha}(\lg n)^{\beta})$ implies

$$\begin{split} \sup_{f \in \mathbb{R}^{n}, \varphi \in H} &|P[(f \cap S_{n}^{*})\varphi] - \Phi_{0,I}[f] P[\varphi]| \\ &= O(n^{-1/2}); \qquad \alpha = \frac{1}{2}, \beta < -\frac{3}{2} \\ &= O(n^{-1/2} \lg \lg n); \qquad \alpha = \frac{1}{2}, \beta = -\frac{3}{2} \\ &= O(n^{-1/2} (\lg n)^{\beta + 3/2}); \qquad \alpha = \frac{1}{2}, \beta > -\frac{3}{2} \\ &= O(n^{-\alpha} (\lg n)^{\beta + \alpha}); \qquad 0 < \alpha < \frac{1}{2}. \end{split}$$

The convergence rates of the preceding Theorem are optimal. This can be seen from Examples, given in [4], where even $H = \{1_B\}$ for some fixed $B \in \mathcal{A}, \mathcal{F} = \{1_{(-\infty,0)}\}, k = 1, \text{ and } X_n \in \mathcal{L}_{\infty}$. Example 5 will show that the moment assumptions on φ and X_n in Theorem 4 are essentially optimal.

A thorough examination of the proof of the d_1 -inequality of Section 2 shows that if r = 1 + 1/(s-3) (s > 3) Theorem 4 also holds for the following cases: $0 < \alpha < \frac{1}{2}$ and $\beta \in \mathbb{R}$; $\alpha = \frac{1}{2}$ and $\beta < -s/2$; $\alpha = \frac{1}{2}$ and $\beta \ge -s/2 \cdot 1/(s-2)$.

We do not know whether it holds for the remaining case, i.e., $\alpha = \frac{1}{2}$ and $-s/2 \le \beta < -s/2 \cdot 1/(s-2)$. The following example shows that for r < 1 + 1/(s-3) (s > 3) all four convergence orders given in Theorem 4 cannot be achieved any more. This example works with k = 1, $\mathscr{F} = \{1_{(-\infty,0)}\}$, and $H = \{\varphi\}$.

5. EXAMPLE. Let s > 3 and r < 1 + 1/(s - 3). There exist i.i.d. $X_n \in \mathscr{L}_s(\mathbb{R}), n \in \mathbb{N}$, a function $\varphi \in \mathscr{L}_r(\mathbb{R})$, and τ_1, τ_2 with $0 < \tau_1 < \frac{1}{2} < \tau_2$ such that

- (i) $d_1(\varphi, \mathcal{A}_n) = O(n^{-\tau_2})$, and
- (ii) $|P(S_n^* \leq 0, \varphi) \Phi(0) P[\varphi]| \ge cn^{-t_1}$ for sufficiently large *n*.

This example shows that if r < 1 + 1/(s-3) the convergence results of Theorem 4 are not true for each pair (α, β) with $\alpha = \frac{1}{2}, \beta \in \mathbb{R}$ and for each (α, β) with $\tau_1 < \alpha < \frac{1}{2}, \beta \in \mathbb{R}$.

6. COROLLARY. Let $X_n \in \mathscr{L}_s(\Omega, \mathscr{A}, P, \mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix where $3 \leq s < \infty$. Let $2 \leq P$ be a family of *p*-measures with densities φ_Q , $Q \in 2$, such that $\sup_{Q \in \mathscr{P}} \|\varphi_Q\|_r < \infty$. Assume that $r = \infty$ if s = 3 and r > 1 + 1/(s - 3) if s > 3. Then $\sup_{Q \in \mathscr{P}} d_1(\varphi_Q, \mathscr{A}_n) = O(n^{-\alpha}(\lg n)^{\beta})$ implies

 $\sup_{Q \in \mathcal{Z}, C \in \mathcal{R}} |Q(S_n^* \in C) - \Phi_{0,I}(C)|$ = $O(n^{-1/2});$ $\alpha = \frac{1}{2}, \beta < -\frac{3}{2}$ = $O(n^{-1/2} \lg \lg n);$ $\alpha = \frac{1}{2}, \beta = -\frac{3}{2}$ = $O(n^{-1/2} (\lg n)^{\beta + 3/2});$ $\alpha = \frac{1}{2}, \beta > -\frac{3}{2}$ = $O(n^{-\alpha} (\lg n)^{\beta + \alpha});$ $0 < \alpha < \frac{1}{2}$

where \mathscr{C} is the system of all Borel-measurable convex subsets of \mathbb{R}^k .

Corollary 6 follows directly from Theorem 4 with $H = \{\varphi_Q : Q \in \mathcal{Q}\}$ and $\mathscr{F} = \{1_C : C \in \mathscr{C}\}$. Observe that \mathscr{F} is a family of Berry-Esseen functions with $\sup\{c_f : f \in \mathscr{F}\} < \infty$ (see Remark 3).

Another application of Theorem 4 works with $H = \{\varphi_Q : Q \in \mathcal{Q}\}$ and $\mathcal{F} = \{f\}$, where f is a bounded Lipschitz function (see also Corollary 10).

In the following we use the $|| ||_r$ -distance $d_r(\varphi, \mathcal{A}_n)$ instead of $d_1(\varphi, \mathcal{A}_n)$. Obviously $d_1(\varphi, \mathcal{A}_n) \leq d_r(\varphi, \mathcal{A}_n)$; hence the assumption $d_r(\varphi, \mathcal{A}_n) = O(n^{-\alpha}(\lg n)^{\beta})$ is stronger than the assumption $d_1(\varphi, \mathcal{A}_n) = O(n^{-\alpha}(\lg n)^{\beta})$.

If, however, $d_r(\varphi, \mathscr{A}_n) = O(d_1(\varphi, \mathscr{A}_n)) = O(n^{-\alpha}(\lg n)^{\beta})$, then the following Theorem yields better convergence rates under weaker moment conditions than Theorem 4.

7. THEOREM. Let $X_n \in \mathscr{L}_s(\Omega, \mathscr{A}, P, \mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix where $3 \leq s < \infty$. Let $H \subset \mathscr{L}_r(\Omega, \mathscr{A}, P, \mathbb{R})$ with $\sup_{\varphi \in H} \|\varphi\|_r < \infty$, where r = 1 + 1/(s-1) (i.e., 1/r + 1/s = 1). Let \mathscr{F} be a family of Berry-Esseen functions $f: \mathbb{R}^k \to [-1, 1]$ with $\sup_{f \in \mathscr{F}} c_f < \infty$. Then $\sup_{\varphi \in H} d_r(\varphi, \mathscr{A}_n) = O(n^{-\alpha}(\lg n)^{\beta})$ implies

$$\sup_{f \in \mathscr{F}, \varphi \in H} |P[(f \circ S_n^*)\varphi] - \Phi_{0,f}[f] P[\varphi]|$$

= $O(n^{-1/2});$ $\alpha = \frac{1}{2}, \beta < -1$
= $O(n^{-1/2} \lg \lg n);$ $\alpha = \frac{1}{2}, \beta = -1$
= $O(n^{-1/2} (\lg n)^{\beta+1});$ $\alpha = \frac{1}{2}, \beta > -1$
= $O(n^{-\alpha} (\lg n)^{\beta});$ $0 < \alpha < \frac{1}{2}.$

The following Example shows that the convergence rates in Theorem 7 are optimal (even if k = 1, $H = \{\varphi\}$, and $\mathscr{F} = \{1_{(-\infty,0)}\}$).

8. EXAMPLE. Let $X_n \in \mathcal{L}_3(\mathbb{R})$, $n \in \mathbb{N}$, be i.i.d. with positive variance and let $r \ge 1$. Assume that $P \circ X_1 = P \circ (-X_1)$ and that $P \circ X_1$ is nonatomic.

Then there exists a function $\varphi = \varphi_{x,\beta} \in \mathscr{L}_r(\mathbb{R})$ such that

(i) $d_r(\varphi, \mathscr{A}_n) = O(n^{-\alpha} (\lg n)^{\beta}),$

and

(ii)
$$|P(S_n^* \leq 0, \varphi) - \Phi(0) P[\varphi]|$$

 $\geq c \cdot n^{-1/2} \lg \lg n;$ if $\alpha = \frac{1}{2}, \beta = -1$
 $\geq c \cdot n^{-1/2} (\lg n)^{\beta+1};$ if $\alpha = \frac{1}{2}, \beta > -1$
 $\geq c \cdot n^{-\alpha} (\lg n)^{\beta};$ if $0 < \alpha < \frac{1}{2}$

for sufficiently large n.

The next Example shows that the moment conditions on φ and X_n in Theorem 7 cannot be weakened.

9. EXAMPLE. Let $s \ge 3$ and 1 < r < 1 + 1/(s-1). Then there exist i.i.d. $X_n \in \mathscr{L}_s(\mathbb{R}), n \in \mathbb{N}$, a function $0 \le \varphi \in \mathscr{L}_r(\mathbb{R})$, and τ with $0 < \tau < \frac{1}{2}$ such that

- (i) $d_r(\varphi, \mathscr{A}_n) = 0$ for all $n \in \mathbb{N}$ and
- (ii) $|P(S_n^* \leq 0, \varphi) \Phi(0) P[\varphi]| \ge cn^{-\tau}$ for sufficiently large $n \in \mathbb{N}$.

10. COROLLARY. Let $X_n \in \mathscr{L}_s(\Omega, \mathscr{A}, P, \mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix where $3 \leq s < \infty$. Let $2 \leq P$ be a family of *p*-measures with densities $\varphi_Q, Q \in 2$, such that $\sup_{Q \in \mathcal{A}} \|\varphi_Q\|_r < \infty$, where 1/r + 1/s = 1.

Then $\sup_{Q \in \mathcal{Q}} d_r(\varphi_Q, \mathcal{A}_n) = O(n^{-\alpha}(\lg n)^{\beta})$ implies that for each Lipschitz function $f: \mathbb{R}^k \to [-1, 1]$

$$\sup_{Q \in \mathcal{A}} |Q[f \circ S_n^*] - \Phi_{0,I}[f]| = O(n^{-1/2}); \qquad \alpha = \frac{1}{2}, \beta < -1$$
$$= O(n^{-1/2} \lg \lg n); \qquad \alpha = \frac{1}{2}, \beta = -1$$
$$= O(n^{-1/2} (\lg n)^{\beta+1}); \qquad \alpha = \frac{1}{2}, \beta > -1$$
$$= O(n^{-1/2} (\lg n)^{\beta}); \qquad 0 < \alpha < \frac{1}{2}.$$

Corollary 10 follows directly from Theorem 8 with $H = \{\varphi_Q : Q \in \mathcal{Q}\}$ and $\mathscr{F} = \{f\}$. Observe that a Lipschitz function is a Berry-Esseen function (see Remark 3).

Another application of Theorem 8 works with $H = \{\varphi_Q : Q \in \mathcal{Q}\}$ and $\mathscr{F} = \{1_C : C \subset \mathbb{R}^k \text{ convex and measurable}\}$ (see also Corollary 6).

3. PROOF OF THE THEOREMS

In this section we prove two inequalities which directly imply our main results of Section 2, namely, Theorem 4 and Theorem 7.

(A) d_1 -INEQUALITY. Let $X_n \in \mathcal{L}_s(\mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix V, where $3 \leq s < \infty$. Let $\varphi \in \mathcal{L}_r(\mathbb{R})$ with $r = \infty$ if s = 3 and r > 1 + 1/(s-3) if s > 3. Let $f: \mathbb{R}^k \to [-1, 1]$ be a Berry-Esseen function. Then there exists a constant c = c(r, s, k) such that for all $j \leq n/2$

$$|P[(f \circ S_n^*) \varphi] - \Phi_{0,t}[f] P[\varphi]|$$

$$\leq \frac{c\rho_s + 4c_f}{\sqrt{n}} \left(\|\varphi\|_r + \sum_{v=2}^j \sqrt{\frac{\lg v}{v}} d_1(\varphi, \mathscr{A}_v) \right) + 2 d_1(\varphi, \mathscr{A}_j)$$

where c_f is the constant occurring in the definition of a Berry-Esseen function.

Proof. W.l.g. we may assume that $P[X_1] = 0$ and V = I; otherwise consider $V^{-1/2}(X_n - P[X_n]), n \in \mathbb{N}$.

Put $\varepsilon_{v} := d_{1}(\varphi, \mathscr{A}_{v}) = \inf\{ \|\varphi - \psi\|_{1} : \psi \quad \mathscr{A}_{v}\text{-measurable} \}$. According to Shintani and Ando [5] there exist \mathscr{A}_{v} -measurable functions $\varphi_{v} : \Omega \to \mathbb{R}$ with

$$\|\varphi - \varphi_{v}\|_{1} = \varepsilon_{v}, \qquad v \in \mathbb{N}.$$
(1)

Now let j and n with $j \leq n/2$ be fixed. Put

$$m(0) = 0, \qquad \varepsilon_0 = \|\varphi\|_1.$$
 (2)

If m(i) < j is defined let

$$m(i+1) = j,$$
 if $\varepsilon_v \ge \frac{1}{4}\varepsilon_{m(i)}$ for $m(i) < v \le j$ (3)

otherwise let

$$m(i+1) = \min\{v \in \mathbb{N} : m(i) < v \leq j, \varepsilon_v < \frac{1}{4}\varepsilon_{m(i)}\}.$$
(4)

According to the inductive definition of m(i) given in (2)-(4) we obtain $l \in \mathbb{N} \cup \{0\}$ and $0 = m(0) < m(1) < \cdots < m(l) < m(l+1) = j$ with

$$\varepsilon_{m(i)} < \frac{1}{4} \varepsilon_{m(i-1)}, \qquad 1 \le i \le l \tag{5}$$

$$\varepsilon_{m(i)} \leq 4\varepsilon_{v}, \qquad 0 \leq i \leq l, \ m(i) \leq v < m(i+1).$$
 (6)

By (5) and (2) we have

$$\varepsilon_{m(i)} \leqslant (1/4^i) \|\varphi\|_1, \qquad 0 \leqslant i \leqslant l. \tag{7}$$

Put

$$\psi_{m(i)} = \varphi_{m(i)} - \varphi_{m(i-1)}, \quad 1 \le i \le l+1, \text{ where } \varphi_{m(0)} = 0.$$
 (8)

By (1) and (2) we have

$$P[|\psi_{m(i)}|] \leq 2\varepsilon_{m(i-1)}, \qquad 1 \leq i \leq l+1.$$
(9)

Let $L(\psi)$ be the left side of the asserted formula, i.e.,

$$L(\psi) := |P[(f \circ S_n^*)\psi] - \Phi_{0,I}[f] P[\psi]|.$$

By (8) we have $\varphi = \varphi - \varphi_j + \sum_{i=1}^{l+1} \psi_{m(i)}$.

Since $|f| \leq 1$ this implies according to (1)

$$L(\varphi) \leq 2\varepsilon_i + \sum_{i=1}^{l+1} L(\psi_{m(i)}).$$
(10)

In the following let c_v denote constants only depending on r, s, and k.

Since f is a Berry-Esseen function, we can apply Lemma 2 for each v = m(i). As $1 \le m(i) \le j \le n/2$ for i = 1, ..., l+1 there consequently exists a constant c_1 such that

$$|P(f \circ S_n^*| \mathcal{A}_{m(i)}) - \Phi_{0,t}[f]| \leq \sqrt{2} \frac{c_f}{\sqrt{n}} + c_1 \left(\frac{m(i)}{n} + \sqrt{\frac{m(i)}{n}} |S_{m(i)}^*| \right).$$
(11)

As $\psi_{m(i)}$ is $\mathscr{A}_{m(i)}$ -measurable, we obtain by (11) for $1 \leq i \leq l+1$

$$L(\psi_{m(i)}) = |P[(P(f \circ S_n^* | \mathcal{A}_{m(i)}) - \Phi_{0,I}[f]) \psi_{m(i)}]|$$

$$\leq \left(\sqrt{2} \frac{c_f}{\sqrt{n}} + c_{\perp} \sqrt{\frac{m(i)}{n}}\right) P[|\psi_{m(i)}|]$$

$$+ c_{\perp} \sqrt{\frac{m(i)}{n}} P[|\psi_{m(i)} S_{m(i)}^*|].$$
(12)

Put $A_v := \{ |S_v^*| > \rho_s^{1/s} \sqrt{(s-1) k \lg v} \}$. For $1 \le i \le l+1$ we have $P[|\psi_{m(i)} S_{m(i)}^*|]$ $\le \rho_s^{1/s} \sqrt{(s-1) k \lg m(i)} P[|\psi_{m(i)}|] + \int_{A_{m(i)}} |\psi_{m(i)} S_{m(i)}^*| dP.$

Hence we obtain from (12) for $1 \le i \le l+1$

$$L(\psi_{m(i)}) \leq \sqrt{2} \frac{c_f}{\sqrt{n}} P[|\psi_{m(i)}|] + 2c_1 \sqrt{(s-1)k} \frac{\rho_s^{1/s}}{\sqrt{n}} \sqrt{m(i) \lg(m(i)+2)} P[|\psi_{m(i)}|] + c_1 \frac{1}{\sqrt{n}} \sqrt{m(i)} \int_{\mathcal{A}_{m(i)}} |\psi_{m(i)} S_{m(i)}^*| dP.$$
(13)

Now we prove the three relations

$$\sum_{i=1}^{l+1} P[|\psi_{m(i)}|] \leq \frac{8}{3} \|\varphi\|_{1}$$
(14)

$$\sum_{i=1}^{l+1} \sqrt{m(i) \lg[m(i)+2]} P[|\psi_{m(i)}|] \leq c_2 \left(\|\varphi\|_1 + \sum_{v=1}^l \sqrt{\frac{\lg(v+2)}{v}} \varepsilon_v \right)$$
(15)

$$\sum_{i=1}^{l+1} \sqrt{m(i)} \int_{A_{m(i)}} |\psi_{m(i)} S_{m(i)}^*| \, dP \leq c_3 \rho_s \|\varphi\|_r.$$
(16)

From (10) and (13)–(16) we obtain the assertion as

$$\sqrt{2} c_f \frac{8}{3} \|\varphi\|_1 \leq 4c_f \|\varphi\|_r$$

and

$$\begin{split} \rho_s^{1/s} \cdot \left(\|\varphi\|_1 + \sum_{v=1}^j \sqrt{\frac{\lg(v+2)}{v}} \varepsilon_v \right) \\ &\leq \rho_s^{1/s} \left(\|\varphi\|_1 + \sqrt{\lg 3} \varepsilon_1 + 2 \sum_{v=2}^j \sqrt{\frac{\lg v}{v}} \varepsilon_v \right) \\ &\leq (1 + \sqrt{\lg 3}) \rho_s^{1/s} \|\varphi\|_1 + 2\rho_s^{1/s} \sum_{v=2}^j \sqrt{\frac{\lg v}{v}} \varepsilon_v \\ &\leq (1 + \sqrt{\lg 3}) \rho_s \left(\|\varphi\|_r + \sum_{v=2}^j \sqrt{\frac{\lg v}{v}} \varepsilon_v \right), \end{split}$$

where the last inequality follows from $\|\varphi\|_1 \leq \|\varphi\|_r$ and $\rho_s \geq 1$. Ad (14). We have by (9) and (7)

$$\sum_{i=1}^{l+1} P[|\psi_{m(i)}|] \leq 2 \sum_{i=1}^{l+1} \varepsilon_{m(i-1)} = 2 \sum_{i=0}^{l} \varepsilon_{m(i)}$$
$$\leq 2 \|\varphi\|_{1} \sum_{i=0}^{l} \frac{1}{4^{i}} \leq \frac{8}{3} \|\varphi\|_{1}.$$

Ad (15). Put $a_{\mu} = \sqrt{\mu} \lg(\mu + 2)$, $x_{m(i)} = P[|\psi_{m(i)}|]$, $1 \le i \le l+1$, and $x_{\mu} = 0$ elsewhere. Using that a_{μ}/μ is decreasing, we have $a_{\mu} \le \sum_{\nu=1}^{\mu} (a_{\nu}/\nu)$ and hence

$$\sum_{i=1}^{l+1} \sqrt{m(i) \lg[m(i)+2]} P[|\psi_{m(i)}|]$$

$$= \sum_{\mu=1}^{j} x_{\mu} a_{\mu} \leq \sum_{\mu=1}^{j} x_{\mu} \sum_{\nu=1}^{\mu} \frac{a_{\nu}}{\nu}$$

$$= \sum_{\nu=1}^{j} \frac{a_{\nu}}{\nu} \sum_{\mu=\nu}^{j} x_{\mu} = \sum_{\nu=1}^{j} \sqrt{\frac{\lg(\nu+2)}{\nu}} \sum_{\mu=\nu}^{j} x_{\mu}.$$
(17)

If $m(i-1) < v \le m(i)$ and $1 \le i \le l+1$, we have according to (9) and (5)

$$\sum_{\mu=v}^{i} x_{\mu} = x_{m(i)} + \dots + x_{m(l+1)} = P[|\psi_{m(i)}|] + \dots + P[|\psi_{m(l+1)}|]$$

$$\leq 2\varepsilon_{m(i-1)} + \dots + 2\varepsilon_{m(l)}$$

$$\leq 2\varepsilon_{m(i-1)} \left[1 + \sum_{\xi=1}^{\infty} \frac{1}{4^{\xi}}\right] \leq \frac{8}{3}\varepsilon_{m(i-1)}.$$
(18)

Hence we have

if m(i-1) < v < m(i) and $1 \le i \le l+1$, then by (18) and (6)

$$\sum_{\mu=\nu}^{j} x_{\mu} \leqslant \frac{8}{3} \varepsilon_{m(i-1)} \leqslant \frac{8}{3} 4\varepsilon_{\nu};$$
(19)

if v = m(i) and $2 \le i \le l+1$, then by (18)

$$\sqrt{\frac{\lg(\nu+2)}{\nu}} \sum_{\mu=\nu}^{i} x_{\mu} \leq \sqrt{\frac{\lg(\nu+2)}{\nu}} \frac{8}{3} \varepsilon_{m(i-1)}$$

$$\leq \frac{8}{3} \sqrt{\frac{\lg[m(i-1)+2]}{m(i-1)}} \varepsilon_{m(i-1)};$$
(20)

if v = m(1), then by (18) and (2)

$$\sqrt{\frac{\lg(\nu+2)}{\nu}} \sum_{\mu=\nu}^{j} x_{\mu} \leq \sqrt{\frac{\lg(\nu+2)}{\nu}} \cdot \frac{8}{3} \varepsilon_{0} \\
= \frac{8}{3} \sqrt{\frac{\lg(m(1)+2)}{m(1)}} \|\varphi\|_{1} \leq c_{4} \|\varphi\|_{1}.$$
(21)

Now (17), (19), (20), and (21) imply (15). Therefore it remains to prove (16). We prove (16) at first for the case s > 3 and hence $r < \infty$.

Ad (16). Let r' fulfill 1/r' + 1/r = 1 and s' fulfill 1/s' + 1/s = 1. As r > (s-2)/(s-3) we have

$$s > 2 + \frac{r}{r-1};$$
 $1 < s' < r; r' < s - 2.$ (22)

According to (22) there exists $\alpha \in (0, 1)$ with

$$s' = \alpha \cdot 1 + (1 - \alpha) r$$
 and hence $\alpha = \frac{1}{r - 1} (r - s') \in (0, 1).$ (23)

Let $1 < a < (4^{\alpha/s'})^2$, then $\sqrt{a}/4^{\alpha/s'} < 1$. Now put

$$M_0 = \{ 1 \le i \le l+1 : m(i) \le a^i \}$$
$$M_1 = \{ 1 \le i \le l+1 : m(i) > a^i \}.$$

We prove that

$$D := \sum_{i \in M_0} \sqrt{m(i)} \int_{A_{m(i)}} |\psi_{m(i)} S_{m(i)}^*| \, dP \le c_5 \rho_s \|\varphi\|_r \tag{16}_1$$

$$E := \sum_{i \in M_1} \sqrt{m(i)} \int_{\mathcal{A}_{m(i)}} |\psi_{m(i)} S_{m(i)}^*| \, dP \leq c_6 \rho_s \|\varphi\|_r.$$
(16)₂

Obviously $(16)_1$ and $(16)_2$ imply (16).

Ad $(16)_1$. We have by Hölder and Lemma 7 using the definition of M_0

$$D \leq \sum_{i \in M_0} \sqrt{m(i)} \|S_{m(i)}^*\|_s \|\psi_{m(i)}\|_{s'} \leq c_7 \rho_s^{1/s} \sum_{i \in M_0} (\sqrt{a})^i \|\psi_{m(i)}\|_{s'}.$$
 (24)

As $1/\alpha > 1$ and $(1/\alpha)' = (1/\alpha)/(1/\alpha - 1) = 1/(1-\alpha)$, we have according to Hölder's inequality and (23)

$$P[|\psi_{m(i)}|^{s'}] = P[|\psi_{m(i)}|^{\alpha} |\psi_{m(i)}|^{(1-\alpha)r}] \leq P[|\psi_{m(i)}|]^{\alpha} P[|\psi_{m(i)}|^{r}]^{1-\alpha}.$$

Using (9) and (7) we obtain

$$\|\psi_{m(i)}\|_{s'} \leq \left(\frac{2}{4^{i-1}} \|\varphi\|_{1}\right)^{\alpha/s'} P[\|\psi_{m(i)}|^{r}]^{(1-\alpha)/s'}.$$
 (25)

By (1) and Lemma 5, we have $\|\varphi_v\|_r \leq 2 \|\varphi\|_r$; hence (8) implies

$$\|\psi_{m(i)}\|_{r} \leq 4 \|\varphi\|_{r}.$$
 (26)

From (25), (26), and (23) we obtain

$$\|\psi_{m(i)}\|_{s'} \leq 8^{|x|s'|} \|\varphi\|_{1}^{|x|s'|} \frac{1}{(4^{|x|s'|})^{i}} (4 \|\varphi\|_{r})^{r(1-|x|)s'}$$
$$\leq c_{8} \|\varphi\|_{r} \left(\frac{1}{4^{|x|s'|}}\right)^{i}.$$
(27)

From (24) and (27) we obtain

$$D \leq c_9 \rho_s^{1/s} \|\phi\|_r \sum_{i \in M_0} \left(\frac{\sqrt{a}}{4^{\alpha/s'}}\right)^i \leq c_5 \rho_s \|\phi\|_r.$$
(28)

Hence we have proved $(16)_1$.

Ad $(16)_2$. Using the Hölder inequality we obtain from (26)

$$E \leq \sum_{i \in M_{1}} \sqrt{m(i)} \|S_{m(i)}^{*} 1_{A_{m(i)}}\|_{r'} \|\psi_{m(i)}\|_{r}$$

$$\leq 4 \|\varphi\|_{r} \sum_{i \in M_{1}} \sqrt{m(i)} \|S_{m(i)}^{*} 1_{A_{m(i)}}\|_{r'}.$$
(29)

We have for $m \ge 2$ —as $\int |Y| dP \le \sum_{\nu=0}^{\infty} P\{|Y| > \nu\}$ —

$$\begin{split} \|S_m^* 1_{A_m}\|_{r'}^{r'} \\ &\leqslant \int |S_m^*|^{r'} 1_{\{|S_m^*| \ge \sqrt{(s-1)\lg m}\}} dP \\ &= \left[(s-1)\lg m \right]^{r'/2} \int \left| \frac{S_m^*}{\sqrt{(s-1)\lg m}} \right|^{r'} 1_{\{|S_m^*| / \sqrt{(s-1)\lg m} \ge 1\}} dP \\ &\leqslant 2(s-1)^{r'/2} (\lg m)^{r'/2} \sum_{v \in \mathbb{N}} P\left\{ \left| \frac{S_m^*}{\sqrt{(s-1)\lg m}} \right|^{r'} \ge v \right\} \\ &= 2(s-1)^{r'/2} (\lg m)^{r'/2} \sum_{v \in \mathbb{N}} P\{|S_m^*| \ge v^{1/r'}(s-1)^{1/2} \sqrt{\lg m} \} \end{split}$$

and hence according to Lemma 6

$$\leq c_{10} (\lg m)^{r'/2} \rho_s \sum_{v \in \mathbb{N}} \frac{1}{v^{s/r'} (s-1)^{s/2} (\lg m)^{s/2}} \frac{1}{m^{(s-2)/2}}.$$

Therefore

$$\|S_m^* \mathbf{1}_{A_m}\|_{r'}^{r'} \leq c_{11} \cdot \rho_s \frac{1}{m^{(s-2)/2}} \frac{1}{(\lg m)^{(s-r')/2}}$$

and hence

$$\sqrt{m(i)} \|S_{m(i)}^{*}1_{A_{m(i)}}\|_{r'} \\ \leqslant c_{12}\rho_{s}^{1/r'} \frac{1}{m(i)^{((s-2)/2r')-1/2}} \frac{1}{(\lg m(i))^{(s-r')/2r'}}.$$
 (30)

Let $\delta = \delta(r, s) := (s-2)/2r' - \frac{1}{2}$. From (29), (30), and $m(i) \ge a^i$ we obtain

$$E \leq c_{13} \|\varphi\|_{r} \rho_{s} \sum_{i \in M_{1}} \frac{1}{(a^{\delta})^{i}} \frac{1}{i^{(s-r')/2r'}}.$$
(31)

As $\delta > 0$ (here we use for the first time r > 1 + 1/(s - 3)) and a > 1, (31) implies (16)₂. Thus the result is proven for the case $r < \infty$.

It remains to prove formula (16) for $r = \infty$, s = 3. Therefore, it suffices to prove (16)₁ and (16)₂ with

$$M_0 = \{1 \le i \le l+1 : m(i) \le a^i\}, \qquad M_1 = \{1 \le i \le l+1 : m(i) > a^i\}$$

where $1 < a < 4^{2/3}$. Since (16)₁ follows by similar methods as for the case $r < \infty$ it remains to prove (16)₂. Since

$$\int_{\mathcal{A}_{m(i)}} |\psi_{m(i)} S_{m(i)}^{*}| \ dP \leq 2 \int_{\mathcal{A}_{m(i)}} |S_{m(i)}^{*}| \ dP \|\varphi\|_{\infty}$$

we have to prove

$$\sum_{i \in M_1} \sqrt{m(i)} \int_{A_{m(i)}} |S_{m(i)}^*| \, dP \le c_6 \rho_3.$$
(32)

For the dimension k = 1 relation (32) was proven in [4, proof of Theorem 2, formula (15)]. Let $X_n := (X_{n,1}, ..., X_{n,k})$, and $S_{m,v}^* := (1/\sqrt{m})$ $\sum_{n=1}^m X_{n,v}$ for v = 1, ..., k. Since V = I, we have $\sigma(X_{n,v}) = 1$ and $\rho_{3,v} = P[|X_{1,v}|^3] \le \rho_3$. Consequently we have for v = 1, ..., k

$$\sum_{i \in M_1} \sqrt{m(i)} \int |S^*_{m(i),v}| \, \mathbf{1}_{\{|S^*_{m(i),v}| > \rho^{1,3}_{3,v}\sqrt{2\lg m(i)}\}} \, dP \leq c_{14}\rho_{3,v}.$$

Hence (32) follows from

$$|S_{m(i)}^{*}| |1_{\mathcal{A}_{m(i)}} \leq \sqrt{k} \sum_{v=1}^{k} |S_{m(i),v}^{*}| |1_{\{|S_{m(i),v}^{*}| > \rho_{3,v}^{1/3} \sqrt{2\lg m(i)}\}}$$

using $\rho_{3,v} \leq \rho_3$.

This d_1 -Inequality (A) directly implies Theorem 4: Apply (A) to $j = j(n) = \lfloor n/\lg n \rfloor$.

The following d_r -Inequality implies Theorem 7: Put $j = j(n) = \lfloor n/2 \rfloor$.

(B) d_r -INEQUALITY. Let $X_n \in \mathscr{L}_s(\mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix V, where $3 \leq s < \infty$; and let $\varphi \in \mathscr{L}_r(\mathbb{R})$ where 1/s + 1/r = 1. Let $f: \mathbb{R}^k \to [-1, 1]$ be a Berry–Esseen function. Then there exists a constant c = c(s, k) such that for all $j \leq n/2$

$$|P[(f \circ S_n^*) \varphi] - \Phi_{0,t}[f] P[\varphi]|$$

$$\leq \frac{c\rho_s + 4c_f}{\sqrt{n}} \left(\|\varphi\|_r + \sum_{v=2}^{i} \frac{1}{\sqrt{v}} d_r(\varphi, \mathscr{A}_v) \right) + 2 d_r(\varphi, \mathscr{A}_f)$$

where c_f is the constant occurring in the definition of a Berry-Esseen function.

Proof. The proof runs similarly as the proof of the d_1 -Inequality (A). Let $P[X_1] = 0$, V = I.

There exist \mathscr{A}_{v} -measurable $\varphi_{v}: \Omega \to \mathbb{R}$ with

$$\|\varphi - \varphi_v\|_r = d_r(\varphi, \mathcal{A}_v) =: \varepsilon_v, \qquad v \in \mathbb{N}.$$
 (1)

Let *j* and *n* with $j \leq n/2$ be fixed. Put

$$m(0) := 0, \qquad \varepsilon_0 := \|\varphi\|_r.$$
 (2)

Define m(i) as in (A). Then (5)–(7) of (A) hold with $\|\varphi\|_r$ instead of $\|\varphi\|_1$. Define $\psi_{m(i)}$ and $L(\psi)$ as in (A). Then (9)–(12) hold, too. To prove the assertion it suffices to prove

$$\sum_{i=1}^{\ell+1} P[|\psi_{m(i)}|] \leq \frac{8}{3} ||\phi||_r$$
(14)'

$$\sum_{i=1}^{l+1} \sqrt{m(i)} P[|\psi_{m(i)}|] \leq \frac{40}{3} \left(\|\varphi\|_r + \sum_{v=1}^{j} \frac{\varepsilon_v}{\sqrt{v}} \right)$$
(15)'

$$\sum_{i=1}^{l+1} \sqrt{m(i)} P[|\psi_{m(i)} S_{m(i)}^*|] \leq c \rho_s \left(\|\varphi\|_r + \sum_{v=1}^{l} \frac{\varepsilon_v}{\sqrt{v}} \right).$$
(16)'

The proof of (14)' runs as the proof of (14) in (A). To show (15)' it suffices to prove

$$\sum_{i=1}^{l+1} \sqrt{m(i)} \|\psi_{m(i)}\|_{r} \leq \frac{40}{3} \left(\|\varphi\|_{r} + \sum_{v=1}^{l} \frac{\varepsilon_{v}}{\sqrt{v}} \right).$$
(15)"

The proof of (15)" runs as the proof of (15) in (A), if we put $a_{\mu} = \sqrt{\mu}$, $x_{m(i)} = \|\psi_{m(i)}\|_r$.

Furthermore we obtain using the Hölder inequality and Lemma 7

$$\sum_{i=1}^{l+1} \sqrt{m(i)} P[|\psi_{m(i)}S_{m(i)}^{*}|] \leq \sum_{i=1}^{l+1} \sqrt{m(i)} \|\psi_{m(i)}\|_{r} \|S_{m(i)}^{*}\|_{s}$$
$$\leq c\rho_{s} \sum_{i=1}^{l+1} \sqrt{m(i)} \|\psi_{m(i)}\|_{r}.$$

Hence (16)' follows from (15)''.

4. PROOF OF THE EXAMPLES

In this section we give the proofs of the five examples of Section 2.

Proof of Example 1. Let $g(t) = (e^{t^2/2}/t(\lg t)^2) \mathbf{1}_{\lfloor 2,\infty \}}(t), t \in \mathbb{R}$, and put $\varphi = g \circ X_1$. Then $0 \le \varphi \in \mathcal{L}_1(\Omega, \mathcal{A}, P, \mathbb{R})$ and $d_1(\varphi, \mathcal{A}_n) = 0$ for all $n \in \mathbb{N}$. It remains to prove (ii). Using Lemma 1 we obtain for $n \ge 3$

$$\begin{aligned} |P(S_n^* \leq 0, \varphi) - \Phi(0) P[\varphi]| \\ &= \left| \int g \circ X_1 P(S_n^* \leq 0 \mid \mathscr{A}_1) \, dP - \int \Phi(0) g \circ X_1 \, dP \right| \\ &= \left| \int g \circ X_1 \left(\Phi\left(-\frac{1}{\sqrt{n-1}} X_1 \right) - \Phi(0) \right) dP \right| \\ &= \int_2^\infty g(t) \left(\Phi(0) - \Phi\left(-\frac{1}{\sqrt{n-1}} t \right) \right) P \circ X_1(dt) \\ &= \frac{1}{\sqrt{2\pi}} \int_2^\infty \frac{1}{t(\lg t)^2} \left(\Phi(0) - \Phi\left(-\frac{1}{\sqrt{n-1}} t \right) \right) dt \\ &= \frac{1}{\sqrt{2\pi}} \int_{2/\sqrt{n-1}}^\infty \frac{1}{u(\lg u \sqrt{n-1})^2} \left(\Phi(0) - \Phi(-u) \right) du \\ &\geqslant c_1 \int_2^3 \frac{1}{u(\lg 3 \sqrt{n-1})^2} du \geqslant c \frac{1}{(\lg n)^2}. \end{aligned}$$

Proof of Example 5. There exist i.i.d. nonatomic X_n , $n \in \mathbb{N}$, with variance 1, such that $P \circ X_1 = P \circ (-X_1)$ and $P\{X_1 > t\} \sim 1/t^s (\lg t)^2$ for $t \to \infty$. Then $X_n \in \mathscr{L}_s(\mathbb{R})$ and $P[X_n] = 0$. As r < 1 + 1/(s-3) we have s < 2 + r/(r-1) and hence there exists δ with

$$\frac{1}{2} < \delta < 1 \qquad \text{and} \qquad \delta(s - r/(r - 1)) < 1. \tag{1}$$

By (1) there exists τ_2 with

$$\frac{1}{2} < \tau_2 < \delta \tag{2}$$

$$s \,\delta(1-r) + (\tau_2 + 1) \,r > 1.$$
 (3)

Then by (2)

$$\tau_1 := \tau_2 / 2\delta < \frac{1}{2}. \tag{4}$$

Let $\varphi_v := (\lg v)^2 v^{\delta - (r_2 + 1)} \mathbb{1}_{\{X_v > v^0\}}$ and put $\varphi = \sum_{v \in V_v} \varphi_v$. At first we show that

$$\varphi \in \mathscr{L}_{\ell}(\mathbb{R}). \tag{5}$$

Since $\varphi_v \ge 0$, $v \in \mathbb{N}$, are independent and $s\delta - (\tau_2 + 1) \ge 0$, according to [2, Lemma 1, p. 358], relation (5) is shown if we prove

$$\sum_{v \in \mathbb{N}} P[\varphi_v^r] < \infty.$$
(6)

As

$$P[\varphi_{v}^{r}] = (\lg v)^{2r} \frac{1}{v^{(\tau_{2}+1)+s\delta)r}} P\{X_{v} > v^{\delta}\}$$
$$\leq c_{1}(\lg v)^{2r-2} \frac{1}{v^{s\delta(1-r)+(\tau_{2}+1)r}},$$

relation (3) implies (6).

Furthermore we have

$$d_1(\varphi, \mathcal{A}_n) \leq \sum_{v > n} P[\varphi_v] \leq c_1 \sum_{v > n} \frac{1}{v^{\tau_2 + 1}} \leq c_2 n^{-\tau_2}$$

i.e., (i) holds. It remains to prove (ii). As $P \cdot X_1 = P \cdot (-X_1)$ and $P \circ X_1$ is nonatomic Lemma 8 yields

$$\Phi(0) P[\varphi_v] - P(S_n^* \leq 0, \varphi_v) \ge 0 \quad \text{for} \quad v, n \in \mathbb{N}.$$
(7)

Now we show that for some $v_0 \in \mathbb{N}$ there holds

$$\Phi(0) P[\varphi_{v}] - P(S_{n}^{*} \leq 0, \varphi_{v})$$

$$\geq c_{3} \frac{1}{\sqrt{n}} \frac{1}{v^{\varepsilon_{2}+1-\delta}} \quad \text{for} \quad v_{0} \leq v \leq n^{1/2\delta}.$$
(8)

To prove (8) we apply Lemma 3 with k = 1, $a = v^{\delta}$, and $B = \{S_1^* \ge a\} = \{X_1 \ge a\}$ and we obtain for all v with $c(P \cup X_1)^{1/\delta} \le v \le n^{1/2\delta}$

$$\begin{split} \Phi(0) \ P[\varphi_v] - P(S_n^* \leq 0, \varphi_v) \\ &= (\lg v)^2 \ v^{s\delta - (\tau_2 + 1)} (\Phi(0) \ P\{X_1 > v^\delta\} - P\{S_n^* \leq 0, X_1 > v^\delta\}) \\ &\geqslant c(\lg v)^2 \ v^{s\delta - (\tau_2 + 1)} \ \frac{1}{\sqrt{n}} \ v^\delta P\{X_1 > v^\delta\}. \end{split}$$

Since $P\{X_1 > t\} \sim 1/t^s (\lg t)^2$ this implies for $v_0 \le v \le n^{1/2\delta}$ with appropriate $v_0 \in \mathbb{N}$

$$\geq c_3 \frac{1}{\sqrt{n}} \frac{1}{v^{\tau_2 + 1 - \delta}}$$

i.e., (8) is shown.

As $0 < \tau_2 + 1 - \delta < 1$ by (1), (2) we obtain from (7) and (8) for sufficiently large n

$$\Phi(0) P[\phi] - P(S_n^* \leq 0, \phi) \ge c_3 \frac{1}{\sqrt{n}} \sum_{v=v_0}^{n^{1/2\delta}} \frac{1}{v^{\tau_2 + 1 - \delta}} \ge c_4 \frac{1}{\sqrt{n}} (n^{1/2\delta})^{\delta - \tau_2} \underset{(4)}{=} c_4 n^{-\tau_1}$$

i.e., (ii) is fulfilled.

Proof of Example 8. Let $a = c(P \circ X_1)$, where $c(P \circ X_1)$ is the constant occurring in Lemma 3. Let $\varphi = \varphi_{\alpha,\beta} := \sum_{v \in \mathbb{N}} \varphi_v$ where $\varphi_v = (1/v^{1+\alpha})(\lg v)^{\beta}$ $1_{\{S_v^* \ge a\}}$. Then $\varphi \in \mathscr{L}_r$ and

$$d_{r}(\varphi, \mathscr{A}_{n}) \leq \left\| \sum_{v > n} \varphi_{v} \right\|_{r} \leq \sum_{v > n} \|\varphi_{v}\|_{r}$$
$$\leq \sum_{v > n} \frac{1}{v^{1+\alpha}} (\lg v)^{\beta} = O(n^{-\alpha}(\lg n)^{\beta}).$$
(1)

Hence (i) is fulfilled.

Applying Lemma 3 to $v \leq n/2 \wedge n/a^2$ and $B = \{S_v^* \geq a\} \in \mathcal{A}_v$, we obtain

$$\Phi(0) P[\varphi_{v}] - P(S_{n}^{*} \leq 0, \varphi_{v})$$

$$= \frac{1}{v^{1+\alpha}} (\lg v)^{\beta} (\Phi(0) P(B) - P(S_{n}^{*} \leq 0, B))$$

$$\geq c_{1} \frac{1}{v^{1+\alpha}} (\lg v)^{\beta} \sqrt{\frac{v}{n}} aP\{S_{v}^{*} \geq a\}.$$

Hence there exists $c_2 = c_2(P \circ X_1)$ and $v_0 = v_0(P \circ X_1) \in \mathbb{N}$ such that

$$\Phi(0) P[\varphi_{v}] - P(S_{n}^{*} \leq 0, \varphi_{v}) \ge c_{2} \frac{1}{\sqrt{n}} \frac{1}{v^{1/2 + \alpha}} (\lg v)^{\beta}$$

if $v_0 \le v \le \lfloor n/2 \land n/a^2 \rfloor =: j(n)$. This implies for sufficiently large n

$$\sum_{\nu = \nu_{0}}^{j(n)} (\Phi(0) P[\varphi_{\nu}] - P(S_{n}^{*} \leq 0, \varphi_{\nu}))$$

$$\geqslant c_{3}n^{-1/2} \lg \lg n; \qquad \alpha = \frac{1}{2}, \beta = -1$$

$$\geqslant c_{3}n^{-1/2} (\lg n)^{\beta+1}; \qquad \alpha = \frac{1}{2}, \beta > -1$$

$$\geqslant c_{3}n^{-\alpha} (\lg n)^{\beta}; \qquad 0 < \alpha < \frac{1}{2}.$$
(2)

As $P \circ X_1 = P \circ (-X_1)$ and $P \circ X_1$ is nonatomic we have by Lemma 8 $P(S_n^* \leq 0, S_v^* \geq a) \leq \frac{1}{2}P(S_v^* \geq a)$ and therefore

$$\Phi(0) P[\varphi_v] - P(S_n^* \leq 0, \varphi_v) \ge 0 \quad \text{for all } v, n \in \mathbb{N}.$$
(3)

Hence (2) and (3) directly imply (ii).

Proof of Example 9. Let $X_n, n \in \mathbb{N}$, be i.i.d. such that $P \circ X_1$ has density $p(t) = (c_1/|t|^{s+1} [\lg |t|]^2) \mathbb{1}_{[2,\infty)}(|t|)$ with respect to the Lebesgue measure. Then $X_n \in \mathscr{L}_s(\mathbb{R})$ and $P[X_n] = 0, n \in \mathbb{N}$. Let $g(t) = t^{s/r} \mathbb{1}_{[2,\infty)}(t)$ and put $\varphi = g \circ X_1$. Then $0 \le \varphi \in \mathscr{L}_r(\mathbb{R})$ and $d_r(\varphi, \mathscr{A}_n) = 0, n \in \mathbb{N}$. Put $\tau_1 := \frac{1}{2} \cdot (s - s/r)$, then $0 < \tau_1 < \frac{1}{2}$. Hence it suffices to prove

$$\Phi(0) P[\varphi] - P(S_n^* \leq 0, \varphi) \ge c \frac{n^{-\tau_1}}{(\lg n)^2} \quad \text{for sufficiently large } n.$$
(1)

Using the Theorem of Berry-Esseen and Lemma 1, we have for sufficiently large n

$$\begin{split} \Phi(0) \ P[\varphi] - P(S_n^* \leq 0, \varphi) \\ &= \int \Phi(0) \ g(X_1) \ dP - \int g(X_1) \ P(S_n^* \leq 0 \mid \mathscr{A}_1) \ dP \\ &= \int \Phi(0) \ g(X_1) \ dP - \int g(X_1) \ F_{n-1} \left(-\frac{1}{\sigma \sqrt{n-1}} X_1 \right) \ dP \\ &\geq \int_2^{\infty} \left[\Phi(0) - \Phi \left(-\frac{1}{\sigma \sqrt{n-1}} t \right) \right] g(t) (P \circ X_1) (dt) - \frac{c_2}{\sqrt{n}} \\ &\geq c_1 \int_2^{\infty} \left[\Phi(0) - \Phi \left(-\frac{1}{\sigma \sqrt{n-1}} t \right) \right] \frac{t^{s/r-(s+1)}}{[\lg t]^2} \ dt - \frac{c_2}{\sqrt{n}} \\ &\geq c_3 (n-1)^{1/2+1/2 + [s/r+(s+1)]} \int_2^{\infty} \frac{u^{s/r-(s+1)}}{[\lg |u| \sqrt{n-1}]^2} \ du - \frac{c_2}{\sqrt{n}} \\ &\geq c_4 n^{-\tau_1} \int_2^3 \frac{u^{s/r-(s+1)}}{[\lg (3\sqrt{n-1})]^2} \ du - \frac{c_2}{\sqrt{n}} \geq c_1 \frac{n^{-\tau_1}}{[\lg n]^2}, \end{split}$$

i.e., (1) is proved.

5. AUXILIARY LEMMATA

In this section we collect all lemmata which are needed for the proofs of the results and examples of Sections 3 and 4.

1. LEMMA. Let $X_n \in \mathcal{L}_3(\mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix. Then we have for $x \in \mathbb{R}^k$ and $v, n \in \mathbb{N}$ with v < n that

$$\omega \to F_{n-\nu}\left(\sqrt{\frac{n}{n-\nu}} x - \sqrt{\frac{\nu}{n-\nu}} S_{\nu}^{*}(\omega)\right)$$

is a version of $P(S_n^* \leq x \mid \mathcal{A}_y)$.

Proof. Direct computation.

2. LEMMA. Let $X_n \in \mathcal{L}_3(\mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with covariance matrix I. Let $f: \mathbb{R}^k \to [-1, 1]$ be a Berry-Esseen function. Then there exists a constant c = c(k) such that for v < n

$$|P(f \circ S_n^* | \mathscr{A}_v) - \Phi_{0,I}[f]| \leq \frac{c_f}{\sqrt{n-v}} + c \left[\frac{v}{n} + \sqrt{\frac{v}{n-v}} |S_v^*|\right].$$

Proof. According to Lemma 1 we have that for v < n

$$\omega \to F_{n-\nu}\left(\sqrt{\frac{n}{n-\nu}}\,x - \sqrt{\frac{\nu}{n-\nu}}\,S_{\nu}^{*}(\omega)\right)$$

is a version of $P(S_n^* \leq x \mid \mathscr{A}_y)$. Therefore

$$P(f \circ S_n^* \mid \mathscr{A}_v) = \int f(x) F_{n-v} \left(\sqrt{\frac{n}{n-v}} \, dx - \sqrt{\frac{v}{n-v}} \, S_v^* \right).$$

Hence we obtain

$$|P(f \circ S_n^* | \mathcal{A}_v) - \Phi_{0,I}[f]|$$

$$\leq \left| \int f(x) \left(F_{n-v} \left(\sqrt{\frac{n}{n-v}} \, dx - \sqrt{\frac{v}{n-v}} \, S_v^* \right) \right) - \Phi_{0,I} \left(\sqrt{\frac{n}{n-v}} \, dx - \sqrt{\frac{v}{n-v}} \, S_v^* \right) \right) \right|$$

$$+ \left| \int f(x) \left(\Phi_{0,I} \left(\sqrt{\frac{n}{n-v}} \, dx - \sqrt{\frac{v}{n-v}} \, S_v^* \right) - \Phi_{0,I}(dx) \right) \right|$$

$$= \left| \int f \left(\sqrt{\frac{n-v}{n}} \, x + \sqrt{\frac{v}{n}} \, S_v^* \right) (F_{n-v} - \Phi_{0,I}) \, dx \right|$$

$$+ \left| \int \left[f \left(\sqrt{\frac{n-v}{n}} \, x + \sqrt{\frac{v}{n}} \, S_v^* \right) - f(x) \right] \Phi_{0,I}(dx) \right|.$$

Since f is a Berry-Esseen function Lemma 4 implies

$$\leq \frac{c_f}{\sqrt{n-v}} + c \left[1 - \sqrt{\frac{n-v}{n}} + \sqrt{\frac{v}{n-v}} |S_v^*| \right],$$

i.e., the assertion.

3. LEMMA. Let $X_n \in \mathcal{L}_3(\mathbb{R})$, $n \in \mathbb{N}$, be i.i.d. with positive variance. Then there exist a universal constant c and a constant $c(P \circ X_1)$ such that

$$\Phi(0) P(B) - P(S_n^* \leq 0, B) \ge c \sqrt{k/n} a P(B)$$

if $a \ge c(P \circ X_1)$, $B \in \mathscr{A}_k$ with $B \subset \{S_k^* \ge a\}$ and $ka^2 \le n, 1 \le k \le n/2$.

Proof. The proof runs similar to the proof of Lemma 4 in [4].

4. LEMMA. There exists a constant c = c(k) such that for each measurable function $f: \mathbb{R}^k \to [-1, +1]$

$$\left|\int \left(f(ax+b) - f(x)\right) \Phi_{0,l}(dx)\right| \leq c \left[\left(1-a\right) + \frac{|b|}{a}\right]$$

for $0 < a \leq 1, b \in \mathbb{R}^k$.

Proof. It suffices to show that

$$\left| \int \left(f(ax) - f(x) \right) \Phi_{0,l}(dx) \right| \leq c(1-a) \quad \text{for} \quad 0 < a \leq 1 \tag{1}$$

$$\left| \int \left(f(x+b) - f(x) \right) \Phi_{0,f}(dx) \right| \le c |b| \qquad \text{for} \quad b \in \mathbb{R}^k.$$
 (2)

Ad (1). W.l.g. $a \ge \frac{1}{2}$ (choose $c \ge 4$). We have

$$\int f(ax) \, \boldsymbol{\Phi}_{0,I}(dx) = \frac{1}{a^k} \int f(y) \, \varphi_{0,I}\left(\frac{1}{a} \, y\right) \, dy$$

and hence

$$\left|\int \left(f(ax)-f(x)\right) \Phi_{0,t}(dx)\right| \leq \int \left|\frac{1}{a^k} \varphi_{0,t}\left(\frac{1}{a} y\right)-\varphi_{0,t}(y)\right| dy.$$

Therefore it suffices to find constants c_1, c_2 such that for $\frac{1}{2} \leq a \leq 1, y \in \mathbb{R}^k$

$$\left|\frac{1}{a^{k}}\varphi_{0,I}\left(\frac{1}{a}y\right) - \varphi_{0,I}(y)\right| \leq (1-a)[c_{1} + c_{2}|y|^{2}]\varphi_{0,I}(y).$$
(3)

Let $y \in \mathbb{R}^k$ be fixed and put

$$g(a) = \frac{1}{a^k} \varphi_{0,I}\left(\frac{1}{a} y\right) - \varphi_{0,I}(y) \quad \text{for} \quad \frac{1}{2} \le a \le 1.$$

As g(1) = 0, we obtain from the mean value theorem

$$|g(a)| \leq (1-a) \sup_{1/2 \leq \xi \leq 1} |g'(\xi)|.$$
(4)

Furthermore

$$g'(\xi) = -\frac{k}{\xi^{k+1}} \varphi_{0,I}\left(\frac{1}{\xi}y\right) + \frac{1}{\xi^{k}} \langle \varphi'_{0,I}\left(\frac{1}{\xi}y\right), -\frac{1}{\xi^{2}}y \rangle$$
$$= -\frac{k}{\xi^{k+1}} \varphi_{0,I}\left(\frac{1}{\xi}y\right) + \frac{1}{\xi^{k+3}} \varphi_{0,I}\left(\frac{1}{\xi}y\right) |y|^{2}.$$
(5)

Now (4) and (5) imply (3).

Ad (2). Let w.l.g.
$$|b| \le 1$$
. We have
 $\left| \int [f(x+b) - f(x)] \Phi_{0,l}(dx) \right| = \left| \int f(x) [\varphi_{0,l}(x-b) - \varphi_{0,l}(x)] dx \right|$
 $\le \int |\varphi_{0,l}(x-b) - \varphi_{0,l}(x)| dx.$ (6)

Using the mean value theorem and $e^{-(1/2)|z|^2} \le e^{-(1/2)(|x|-1)^2}$, for |x| > 1 and $z \in [x-b, x]$, we obtain

$$\begin{aligned} |\varphi_{0,l}(x-b) - \varphi_{0,l}(x)| &\leq |b| \sup_{z \in [x-b,x]} |\varphi'_{0,l}(z)| \\ &= |b| \sup_{z \in [x-b,x]} |z| \varphi_{0,l}(z) \\ &\leq |b|(|x|+1) \sup_{z \in [x-b,x]} \varphi_{0,l}(z) \\ &\leq |b|(|x|+1) \{1_{E}(x) + e^{-(1/2)(|x|-1)^{2}}\} \end{aligned}$$
(7)

where $E = \{z \in \mathbb{R}^k : |z| \leq 1\}$. Now (6) and (7) imply (2).

5. LEMMA. Let $1 < r < \infty$ and $\varphi \in \mathscr{L}_r(\mathbb{R})$. Let $\mathscr{A}_0 \subset \mathscr{A}$ be a sub- σ -field of \mathscr{A} and φ_0 an \mathscr{A}_0 -measurable function with

$$\|\varphi - \varphi_0\|_1 = d_1(\varphi, \mathscr{A}_0).$$

Then

$$\|\varphi_0\|_r \leqslant 2 \|\varphi\|_r.$$

Proof. Let $Q: \Omega \times \mathcal{A}_0 \to [0, 1]$ be a regular conditional distribution of φ given \mathcal{A}_0 . It is well known that $\varphi_0(\omega)$ is for *P*-a.a. $\omega \in \Omega$ a median of the *p*-measure $Q(\cdot, \omega) | \mathscr{B}$ (see [5]). Hence

$$|\varphi_0(\omega)| \leq 2 \int |x| Q(dx, \omega)$$
 P-a.e.

Then the convexity inequality implies

$$|\varphi_0(\omega)|^r \leq 2^r \int |x|^r Q(dx, \omega) \qquad P-\text{a.e.}$$
(1)

As $\int (\int |x|^r Q(dx, \omega)) P(d\omega) = \int |\varphi(\omega)|^r P(d\omega)$, integration of (1) yields the assertion.

6. LEMMA. Let $s \ge 3$ and $X_n \in \mathscr{L}_s(\mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with $P(X_1) = 0$ and covariance matrix I. Then there exists a constant c = c(s, k) such that

$$P\{|S_n^*| \ge t\} \le c \frac{\rho_s}{t^s n^{(s-2)/2}} \quad \text{for all } t > 0 \text{ with } t^2 \ge (s-1) \lg n.$$

Proof. Apply Theorem 17.11 of [1] to i.i.d. random variables with Cov $X_i = I$ and $\delta = 1$.

7. LEMMA. Let $s \ge 2$ and let $X_n \in \mathscr{L}_s(\mathbb{R}^k)$, $n \in \mathbb{N}$, be i.i.d. with $P[X_1] = 0$ and covariance matrix I. Then there exists a constant c = c(s, k) such that

 $\|S_n^*\|_s \leq c\rho_s^{1/s}.$

Proof. For k = 1 use Theorem 2 of [2, p. 356] and apply the proof of Corollary 2 of [2, p. 357]. The case k > 1 follows directly from the case k = 1.

8. LEMMA. Let $X_n \in \mathscr{L}_3(\mathbb{R})$ be i.i.d. with positive variance such that $P \circ X_1 = P \circ (-X_1)$ and $P \circ X_1$ is nonatomic. Then we have for all a > 0 and $r, n \in \mathbb{N}$

$$P(S_n^* \leq 0, S_r^* \geq a) \leq \frac{1}{2} P(S_r^* \geq a).$$

Proof. It suffices to show

$$P(S_n^* \leq 0, S_r^* \geq a) \leq P(S_n^* > 0, S_r^* \geq a).$$

The case r = n is trivial. The cases r < n and r > n follow by using Lemma 1.

References

- 1. R. N. BHATTACHARYA AND R. R. RAO, "Normal Approximation and Asymptotic Expansions," Wiley, New York, 1976.
- 2. Y. S. CHOW AND H. TEICHER, "Probability Theory," Springer-Verlag, New York, 1978.
- 3. D. LANDERS AND L. ROGGE, Inequalities for conditioned normal approximations, Ann. of Probab. 5 (1977), 595-600.
- 4. D. LANDERS AND L. ROGGE, Exact approximation orders in the conditional central limit theorem, Z. Wahrsch. Verw. Gebiete 66 (1984), 227-244.
- 5. T. SHINTANI AND T. ANDO, Best approximants in L_1 -spaces, Z. Wahrsch. Verw. Gebiete 33 (1975), 33-39.