Uniform Normal Approximation Orders for Families of Dominated Measures

Dieter Landers

Mathematisches Institut der Universität zu Köln, Wevertal 86-90, D-5000 Köln 41. West Germany

AND

Lothar Rogge

Unitersität-GH-Duisburg, Postfach 10629, Fachbereich 1//Mathematik, D-4100 Duisburg 1. West Germany

Communicated bv P. L. Butzer
Received February 15, 1984

1. Introduction and Notation

Let (Ω, \mathscr{A}, P) be a probability space and $1 \leqslant s \leqslant \infty$. If \mathbb{R}^{k} is endowed with the euclidean norm, denote by $\mathscr{L}_{s}\left(\Omega, \mathscr{A}, P, \mathbb{R}^{k}\right)$ the system of all \mathscr{A}-measurable $X: \Omega \rightarrow \mathbb{R}^{k}$ with $\|X\|_{s}<\infty$, where $\|X\|_{s}=\left(\int|X|^{s} d P\right)^{1 / s}$ for $1 \leqslant s<\infty$ and $\|X\|_{\infty}=\inf \{c>0:|X| \leqslant c P$-a.e. $\}$.

Let $X_{n} \in \mathscr{L}_{2}\left(\Omega, \mathscr{A}, P, \mathbb{R}^{k}\right), n \in \mathbb{N}$, be a sequence of independent and identically distributed (i.i.d.) random vectors with positive definite covariance matrix V. Put $S_{n}^{*}=(1 / \sqrt{n}) V^{-1 / 2}\left(\sum_{v=1}^{n}\left(X_{v}-P\left[X_{v}\right]\right)\right.$, where $P\left[X_{v}\right]=$ $\int X_{r} d P$. Let $\mathscr{A}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ be the σ-field generated by X_{1}, \ldots, X_{n}. If $\varphi \in \mathscr{L}_{1}$ $(\Omega, \mathscr{A}, P, \mathbb{R})$, let

$$
d_{1}\left(\varphi, \mathscr{A}_{n}\right):=\inf \left\{\|\varphi-\psi\|_{1}: \psi \mathscr{A}_{n} \text {-measurable }\right\},
$$

the $\left\|\|_{1}\right.$-distance of φ from the subspace $\mathscr{L}_{1}\left(\Omega, \mathscr{A}_{n}, P, \mathbb{R}\right)$.
Let Φ be the distribution function of the standard normal distribution in \mathbb{R}. According to a well-known theorem of Renyi we have for each $\varphi \in \mathscr{L}_{1}$ $(\Omega, \mathscr{A}, P, \mathbb{R})$,

$$
\sup _{t \in \mathbb{R}}\left|P\left[1_{\left\{s_{n}^{*} \leqslant 1!\right.} \varphi\right]-\Phi(t) P[\varphi]\right|_{n \in \mathbb{N}} \rightarrow 0 .
$$

In this paper we investigate convergence rates of these expressions. In [4,

Corollary 3], it was shown that, for i.i.d. $X_{n} \in \mathscr{L}_{3}(\Omega, \mathscr{A}, P, \mathbb{R})$ and $\varphi=1_{B}$ with $B \in \mathscr{A}$, we have

$$
\begin{array}{rlrl}
d_{1}\left(\varphi, \mathscr{A}_{n}\right)=O\left(n^{-1 / 2}(\lg n)^{\beta}\right) & & \\
\Rightarrow \sup _{t \in \mathbb{R}}\left|P\left[1_{\left\{S_{n}^{*} \leqslant t\right\}} \varphi\right]-\Phi(t) P[\varphi]\right| & =O\left(n^{-1 / 2}\right) ; & & \beta<-\frac{3}{2} \\
& =O\left(n^{-1 / 2} \lg \lg n\right) ; & & \beta=-\frac{3}{2} \\
& =O\left(n^{1 / 2}(\lg n)^{\beta+3 / 2}\right) ; & & \beta>-\frac{3}{2} \tag{I}
\end{array}
$$

these convergence rates being optimal. It seems desirable to obtain the implication (I) for more general functions φ than indicator functions. If, e.g., φ is a density of a probability measure $Q \mid \mathscr{A}$ with respect to $P \mid \mathscr{A}$, implication (I) yields a convergence order for $\sup _{t \in \mathbb{R}}\left|Q\left(S_{n}^{*} \leqslant t\right)-\Phi(t)\right|$. Unfortunately implication (I) is not true any more for arbitrary densities φ : Example 1 shows that even if $d_{1}\left(\varphi, \mathscr{A}_{n}\right)=0$ for all $n \in \mathbb{N}$ and X_{n} is standard normally distributed, implication (I) "extremely" fails. It turns out that we need suitable moment conditions for φ and X_{n} to guarantee implication (I). We prove that (I) holds if $\varphi \in \mathscr{L}_{r}(\mathbb{R})$ and $X_{n} \in \mathscr{L}_{s}(\mathbb{R})$ where $r=\infty$ if $s=3$ and $r>1+1 /(s-3)$ if $s>3$. Example 5 shows that these moment conditions are essentially optimal. We prove our result for \mathbb{R}^{k}-valued X_{n} and replace, moreover, $1_{\left\{S_{n}^{*} \leqslant t\right\}}=1_{(\ldots \infty, t]^{\circ} S_{n}^{*}}$ by $f \circ S_{n}^{*}$ with Berry-Esseen functions $f: \mathbb{R}^{k} \rightarrow[-1,1]$ (see Theorem 4). This result yields, e.g., convergence rates for

$$
\sup _{Q \in \neq 2} \sup _{C \in \mathbb{K}}\left|Q\left(S_{n}^{*} \in C\right)-\Phi_{0 . I}(C)\right|
$$

where $\mathscr{2}$ is a family of p-measures dominated by P, \mathscr{C} is the class of all convex measurable sets of \mathbb{R}^{k}, and $\Phi_{0, I}$ is the standard normal distribution of \mathbb{R}^{k} (see Corollary 6). Furthermore we prove a corresponding result (Theorem 7) using the $\left\|\|_{r}\right.$-distance

$$
d_{r}\left(\varphi, \mathscr{A}_{n}\right):=\inf \left\{\|\varphi-\psi\|_{r}: \psi \mathscr{A}_{n} \text {-measurable }\right\}
$$

instead of the $\left\|\|_{1}\right.$-distance $d_{1}\left(\varphi, \mathscr{A}_{n}\right)$. Examples show that the convergence rates in this theorem as well as the moment conditions are optimal. We often write $P\left(S_{n}^{*} \leqslant t, \varphi\right)$ instead of $P\left[1_{\left\{s_{n}^{*} \leqslant t\right\rangle} \varphi\right]$ and $\Phi_{0, I}[f]$ instead of $\int f(x) \Phi_{0 . /}(d x)$. Furthermore $F_{n}(x)=P\left\{S_{n}^{*} \leqslant x\right\}, x \in \mathbb{R}^{k}$, denotes the distribution function of S_{n}^{*}. If $X_{1} \in \mathscr{L} s\left(\Omega, \mathscr{A}, P, \mathbb{R}^{k}\right)$ has positive definite covariance matrix V, we write

$$
\rho_{s}:=P\left[\left|V^{1 / 2}\left(X_{1}-P\left[X_{1}\right]\right)\right|^{s}\right] .
$$

If we write $c=c(., .,$.$) the parameters in the bracket are the only$ parameters the constant ($c>0$) depends upon.

In Section 2 we present our Results, in Section 3 we prove the Theorems of Section 2, and in Section 4 we prove the counterexamples of Section 2. Section 5 contains all auxiliary lemmata.

2. The Results

The following Example 1 shows that implication (I) does not hold for all $\varphi \in \mathscr{L}_{1}(\Omega, \mathscr{A}, P, \mathbb{R})$.

1. Example. Let $X_{n}, n \in \mathbb{N}$, be i.i.d. and standard normally distributed in \mathbb{R}. Then there exists $0 \leqslant \varphi \in \mathscr{L}_{1}$ such that

$$
\begin{equation*}
d_{1}\left(\varphi, \mathscr{A}_{n}\right)=0 \quad \text { for all } \quad n \in \mathbb{N} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P\left(S_{n}^{*} \leqslant 0, \varphi\right)-\Phi(0) P[\varphi]\right| \geqslant c \frac{1}{(\lg n)^{2}}, \quad n \geqslant 3 \tag{ii}
\end{equation*}
$$

To formulate our results we need the following definition.
2. Definition. Let $X_{n} \in \mathscr{L}_{3}\left(\Omega, \mathscr{A}, P, \mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. A function $f: \mathbb{R}^{k} \rightarrow[-1,1]$ is a Berry-Esseen function iff f is Borel-measurable and

$$
\left|\int f(a x+b)\left(F_{n}-\Phi_{0 . f}\right)(d x)\right| \leqslant \frac{c_{f}}{\sqrt{n}} \quad \text { for } \quad 0<a \leqslant 1, b \in \mathbb{R}^{k}
$$

where $c_{f}=c\left(f, P \circ X_{1}\right)$.
3. Remark. Let $X_{n} \in \mathscr{L}_{3}\left(\Omega, \mathscr{A}, P, \mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix.
(i) If $f: \mathbb{R}^{k} \rightarrow[-1,1]$ is a Lipschitz function (i.e., $|f(x)-f(y)| \leqslant$ $c|x-y|$, then f is a Berry-Esseen function with $c_{f}=c(k) \cdot c \cdot \rho_{3}$ (see [1, Theorem 17.8, p. 173]).
(ii) If $f:=1_{c}$, with $C \subset \mathbb{R}^{k}$ convex and Borel-measurable, then f is a Berry-Esseen function with $c_{f}=c(k) \cdot \rho_{3}$ (see [1, Corollary 17.2, p. 165]).
4. Theorem. Let $X_{n} \in \mathscr{L}_{s}\left(\Omega, \mathscr{A}, P, \mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix, where $3 \leqslant s<\infty$. Let $H \subset \mathscr{L}_{r}(\Omega, \mathscr{A}, P, \mathbb{R})$ with
$\sup _{\varphi \in H}\|\varphi\|_{r}<x$. Assume that $r=x$ if $s=3$ and $r>1+1 /(s-3)$ if $s>3$. Let \mathscr{F} be a family of Berry Esseen functions $f: \mathbb{R}^{k} \rightarrow[-1,1]$ with $\sup _{f \in \mathcal{F}}$ $c_{r}<\infty$. Then $\sup _{\varphi \in H} d_{1}\left(\varphi, \mathscr{A}_{n}\right)=O\left(n^{x}(\lg n)^{\beta}\right)$ implies

$$
\begin{array}{rlrl}
\sup _{f \in \overline{\mathcal{F}} \cdot \varphi \in H}\left|P\left[\left(f S_{n}^{*}\right) \varphi\right]-\Phi_{0, l}[f] P[\varphi]\right| \\
& =O\left(n^{1: 2}\right) ; & & \alpha=\frac{1}{2}, \beta<-\frac{3}{2} \\
& =O\left(n^{1: 2} \lg \lg n\right) ; & & \alpha=\frac{1}{2}, \beta=-\frac{3}{2} \\
& =O\left(n^{1 / 2}(\lg n)^{\beta+3 / 2}\right) ; & & \alpha=\frac{1}{2}, \beta>-\frac{3}{2} \\
& =O\left(n^{x}(\lg n)^{\beta+x}\right) ; & & 0<\alpha<\frac{1}{2} .
\end{array}
$$

The convergence rates of the preceding Theorem are optimal. This can be seen from Examples, given in [4], where even $H=\left\{1_{B}\right\}$ for some fixed $B \in \mathscr{A}, \mathscr{F}=\left\{\begin{array}{l}1, \ldots 0\end{array}\right\}, k=1$, and $X_{n} \in \mathscr{L}_{x}$. Example 5 will show that the moment assumptions on φ and X_{n} in Theorem 4 are essentially optimal.

A thorough examination of the proof of the d_{1}-inequality of Section 2 shows that if $r=1+1 /(s-3)(s>3)$ Theorem 4 also holds for the following cases: $0<\alpha<\frac{1}{2}$ and $\beta \in \mathbb{R} ; \quad \alpha=\frac{1}{2}$ and $\beta<-s / 2 ; \quad \alpha=\frac{1}{2}$ and $\beta \geqslant-s / 2 \cdot 1 /(s-2)$.

We do not know whether it holds for the remaining case, i.e., $\alpha=\frac{1}{2}$ and $-s / 2 \leqslant \beta<-s / 2 \cdot 1 /(s-2)$. The following example shows that for $r<1+1 /(s-3)(s>3)$ all four convergence orders given in Theorem 4 cannot be achieved any more. This example works with $k=1$, $\mathscr{F}=\left\{\begin{array}{ll}1, & \times, 0\end{array}\right\}$, and $H=\{\varphi\}$.
5. Example. Let $s>3$ and $r<1+1 /(s-3)$. There exist i.i.d. $X_{n} \in \mathscr{L}_{s}(\mathbb{R}), n \in \mathbb{N}$, a function $\varphi \in \mathscr{L}_{r}(\mathbb{R})$, and τ_{1}, τ_{2} with $0<\tau_{1}<\frac{1}{2}<\tau_{2}$ such that
(i) $\quad d_{1}\left(\varphi, A_{n}\right)=O\left(n^{\because}\right)$, and
(ii) $\left|P\left(S_{n}^{*} \leqslant 0, \varphi\right)-\Phi(0) P[\varphi]\right| \geqslant c n^{{ }^{t_{1}}}$ for sufficiently large n.

This example shows that if $r<1+1 /(s-3)$ the convergence results of Theorem 4 are not true for each pair (α, β) with $\alpha=\frac{1}{2}, \beta \in \mathbb{R}$ and for each (α, β) with $\tau_{1}<\alpha<\frac{1}{2}, \beta \in \mathbb{R}$.
6. Corollary. Let $X_{n} \in \mathscr{L}\left(\Omega, s, P, \mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix where $3 \leqslant s<\infty$. Let $2 \ll P$ be a family of p-measures with densities $\varphi_{Q}, Q \in 2$, such that $\sup _{Q \in \mathcal{L}}\left\|\varphi_{Q}\right\|_{r}<\infty$. Assume that $r=\infty$ if $s=3$ and $r>1+1 /(s-3)$ if $s>3$. Then $\sup _{Q \in,} d_{1}\left(\varphi_{Q}, \mathscr{Q}_{n}\right)=$ $O\left(n^{-x}(\lg n)^{\beta}\right)$ implies

$$
\begin{array}{rlrl}
\sup _{Q \in 2 \in \mathcal{Y}}\left|Q\left(S_{n}^{*} \in C\right)-\Phi_{0, S}(C)\right| \\
& =O\left(n^{1 / 2}\right) ; & & \alpha=\frac{1}{2}, \beta<-\frac{3}{2} \\
& =O\left(n^{1 / 2} \lg \lg n\right) ; & & \alpha=\frac{1}{2}, \beta=-\frac{3}{2} \\
& =O\left(n^{1 / 2}(\lg n)^{\beta+3 / 2}\right) ; & & \alpha=\frac{1}{2}, \beta>-\frac{3}{2} \\
& =O\left(n^{x}(\lg n)^{\beta+x}\right) ; & & 0<\alpha<\frac{1}{2}
\end{array}
$$

where \mathscr{C} is the system of all Borel-measurable convex subsets of \mathbb{R}^{k}.
Corollary 6 follows directly from Theorem 4 with $H=\left\{\varphi_{Q}: Q \in \mathfrak{2}\right\}$ and $\mathscr{F}=\left\{1_{C}: C \in \mathscr{C}\right\}$. Observe that \mathscr{F} is a family of Berry-Esseen functions with $\sup \left\{c_{f}: f \in \mathscr{F}\right\}<\infty$ (see Remark 3).

Another application of Theorem 4 works with $H=\left\{\varphi_{Q}: Q \in \mathscr{Q}\right\}$ and $\mathscr{F}=\{f\}$, where f is a bounded Lipschitz function (see also Corollary 10).

In the following we use the $\left\|\|_{r}\right.$-distance $d_{r}\left(\varphi, \mathscr{A}_{n}\right)$ instead of $d_{1}\left(\varphi, \mathscr{A}_{n}\right)$. Obviously $d_{1}\left(\varphi, \mathscr{A}_{n}\right) \leqslant d_{r}\left(\varphi, \mathscr{A}_{n}\right)$; hence the assumption $d_{r}\left(\varphi, \mathscr{A}_{n}\right)=$ $O\left(n^{-\alpha}(\lg n)^{\beta}\right)$ is stronger than the assumption $d_{1}\left(\varphi, \mathscr{A}_{n}\right)=O\left(n^{-\alpha}(\lg n)^{\beta}\right)$.

If, however, $d_{r}\left(\varphi, \mathscr{A}_{n}\right)=O\left(d_{1}\left(\varphi, \mathscr{A}_{n}\right)\right)=O\left(n^{*}(\lg n)^{\beta}\right)$, then the following Theorem yields better convergence rates under weaker moment conditions than Theorem 4.
7. Theorem. Let $X_{n} \in \mathscr{L}_{s}\left(\Omega, \mathscr{A}, P, \mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix where $3 \leqslant s<x$. Let $H \subset \mathscr{L}_{r}(\Omega, \mathscr{A}, P, \mathbb{R})$ with $\sup _{\varphi \in H}\|\varphi\|_{r}<\infty$, where $r=1+1 /(s-1)$ (i.e., $\left.1 / r+1 / s=1\right)$. Let \mathscr{F} be a family of Berry-Esseen functions $f: \mathbb{R}^{k} \rightarrow[-1,1]$ with $\sup _{f \in, \mathcal{F}} c_{f}<\infty$. Then $\sup _{\varphi \in H} d_{r}\left(\varphi, \mathscr{A}_{n}\right)=O\left(n^{-\alpha}(\lg n)^{\beta}\right)$ implies

$$
\begin{array}{rlrl}
\sup _{f \in \mathscr{W}, \varphi \in H}\left|P\left[\left(f \circ S_{n}^{*}\right) \varphi\right]-\Phi_{0, I}[f] P[\varphi]\right| \\
& =O\left(n^{-1: 2}\right) ; & & \alpha=\frac{1}{2}, \beta<-1 \\
& =O\left(n^{1 / 2} \lg \lg n\right) ; & & \alpha=\frac{1}{2}, \beta=-1 \\
& =O\left(n^{1 / 2}(\lg n)^{\beta+1}\right) ; & & \alpha=\frac{1}{2}, \beta>-1 \\
& =O\left(n^{x}(\lg n)^{\beta}\right) ; & & 0<\alpha<\frac{1}{2} .
\end{array}
$$

The following Example shows that the convergence rates in Theorem 7 are optimal (even if $k=1, H=\{\varphi\}$, and $\mathscr{F}=\left\{\begin{array}{ll}1, & \times .0\end{array}\right\}$).
8. Example. Let $X_{n} \in \mathscr{L}_{3}(\mathbb{R}), n \in \mathbb{N}$, be i.i.d. with positive variance and let $r \geqslant 1$. Assume that $P X_{1}=P\left(-X_{1}\right)$ and that $P=X_{1}$ is nonatomic.

Then there exists a function $\varphi=\varphi_{\alpha, \beta} \in \mathscr{L}_{r}(\mathbb{R})$ such that

$$
\begin{equation*}
d_{r}\left(\varphi, \alpha_{n}\right)=O\left(n^{x}(\lg n)^{\beta}\right) \tag{i}
\end{equation*}
$$

and
(ii) $\left|P\left(S_{n}^{*} \leqslant 0, \varphi\right)-\Phi(0) P[\varphi]\right|$

$$
\begin{array}{ll}
\geqslant c \cdot n^{1 / 2} \lg \lg n ; & \text { if } \quad \alpha=\frac{1}{2}, \beta=-1 \\
\geqslant c \cdot n^{1 / 2}(\lg n)^{\beta+1} ; & \text { if } \quad \alpha=\frac{1}{2}, \beta>-1 \\
\geqslant c \cdot n^{x}(\lg n)^{\beta ;} & \text { if } \quad 0<\alpha<\frac{1}{2}
\end{array}
$$

for sufficiently large n.
The next Example shows that the moment conditions on φ and X_{n} in Theorem 7 cannot be weakened.
9. Example. Let $s \geqslant 3$ and $1<r<1+1 /(s-1)$. Then there exist i.i.d. $X_{n} \in \mathscr{L}_{s}(\mathbb{R}), n \in \mathbb{N}$, a function $0 \leqslant \varphi \in \mathscr{L}_{r}(\mathbb{R})$, and τ with $0<\tau<\frac{1}{2}$ such that
(i) $d_{r}\left(\varphi, \mathscr{A}_{n}\right)=0$ for all $n \in \mathbb{N}$ and
(ii) $\left|P\left(S_{n}^{*} \leqslant 0, \varphi\right)-\Phi(0) P[\varphi]\right| \geqslant c n^{-\tau}$ for. sufficiently large $n \in \mathbb{N}$.
10. Corollary. Let $X_{n} \in \mathscr{L}_{s}\left(\Omega, \mathscr{A}, P, \mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix where $3 \leqslant s<\infty$. Let $2 \ll P$ be a family of p-measures with densities $\varphi_{Q}, Q \in \mathcal{Z}$, such that $\sup _{Q \in \mathcal{2}}\left\|\varphi_{Q}\right\|_{r}<\infty$, where $1 / r+1 / s=1$.

Then $\sup _{Q \in \perp} d_{r}\left(\varphi_{Q}, \mathscr{A}_{n}\right)=O\left(n^{x}(\lg n)^{\beta}\right)$ implies that for each Lipschitz function $f: \mathbb{R}^{k} \rightarrow[-1,1]$

$$
\begin{aligned}
\sup _{Q \in \lambda}\left|Q\left[f \circ S_{n}^{*}\right]-\Phi_{0, \lambda}[f]\right| & =O\left(n^{1 / 2}\right) ; \\
& =O\left(n^{-1: 2} \lg \lg n\right) ; \\
& =O\left(n^{1: 2}(\lg n)^{\beta+1}\right) ;
\end{aligned} \begin{array}{ll}
\alpha=\frac{1}{2}, \beta<-1 \\
& \alpha=\beta>-1 \\
& =O\left(n^{x}(\lg n)^{\beta}\right) ;
\end{array} \begin{array}{ll}
0<\alpha<\frac{1}{2} .
\end{array}
$$

Corollary 10 follows directly from Theorem 8 with $H=\left\{\varphi_{Q}: Q \in \mathcal{Z}\right\}$ and $\mathscr{F}=\{f\}$. Observe that a Lipschitz function is a Berry-Esseen function (see Remark 3).

Another application of Theorem 8 works with $H=\left\{\varphi_{Q}: Q \in \mathbb{Z}\right\}$ and $\mathscr{F}=\left\{1_{C}: C \subset \mathbb{R}^{k}\right.$ convex and measurable $\}$ (see also Corollary 6).

3. Proof of the Theorems

In this section we prove two inequalities which directly imply our main results of Section 2, namely, Theorem 4 and Theorem 7.
(A) d_{1}-Inequality. Let $X_{n} \in \mathscr{L}_{s}\left(\mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix V, where $3 \leqslant s<\infty$. Let $\varphi \in \mathscr{L}_{r}(\mathbb{R})$ with $r=\infty$ if $s=3$ and $r>1+1 /(s-3)$ if $s>3$. Let $f: \mathbb{R}^{k} \rightarrow[-1,1]$ be a Berry-Esseen function. Then there exists a constant $c=c(r, s, k)$ such that for all $j \leqslant n / 2$

$$
\begin{aligned}
& \left|P\left[\left(f \circ S_{n}^{*}\right) \varphi\right]-\Phi_{0, \lambda}[f] P[\varphi]\right| \\
& \quad \leqslant \frac{c \rho_{s}+4 c_{f}}{\sqrt{n}}\left(\|\varphi\|_{r}+\sum_{v=2}^{j} \sqrt{\frac{\lg v}{v}} d_{1}\left(\varphi, \mathscr{A}_{v}\right)\right)+2 d_{1}\left(\varphi, \mathscr{A}_{j}\right)
\end{aligned}
$$

where c_{f} is the constant occurring in the definition of a Berry-Esseen function.

Proof. W.l.g. we may assume that $P\left[X_{1}\right]=0$ and $V=I$; otherwise consider $V^{-1 / 2}\left(X_{n}-P\left[X_{n}\right]\right), n \in \mathbb{N}$.

Put $\quad \varepsilon_{v}:=d_{1}\left(\varphi, \mathscr{A}_{v}\right)=\inf \left\{\|\varphi-\psi\|_{1}: \psi \quad \mathscr{A}_{v}\right.$-measurable $\}$. According to Shintani and Ando [5] there exist \mathscr{A}_{v}-measurable functions $\varphi_{v}: \Omega \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
\left\|\varphi-\varphi_{v}\right\|_{1}=\varepsilon_{v}, \quad \nu \in \mathbb{N} . \tag{1}
\end{equation*}
$$

Now let j and n with $j \leqslant n / 2$ be fixed. Put

$$
\begin{equation*}
m(0)=0, \quad \varepsilon_{0}=\|\varphi\|_{1} . \tag{2}
\end{equation*}
$$

If $m(i)<j$ is defined let

$$
\begin{equation*}
m(i+1)=j, \quad \text { if } \quad \varepsilon_{v} \geqslant \frac{1}{4} \varepsilon_{m(i)} \text { for } m(i)<v \leqslant j \tag{3}
\end{equation*}
$$

otherwise let

$$
\begin{equation*}
m(i+1)=\min \left\{v \in \mathbb{N}: m(i)<v \leqslant j, \varepsilon_{v}<\frac{1}{4} \varepsilon_{m(i)}\right\} \tag{4}
\end{equation*}
$$

According to the inductive definition of $m(i)$ given in (2)-(4) we obtain $l \in \mathbb{N} \cup\{0\}$ and $0=m(0)<m(1)<\cdots<m(l)<m(l+1)=j$ with

$$
\begin{array}{ll}
\varepsilon_{m(i)}<\frac{1}{4} \varepsilon_{m(i-1)}, & 1 \leqslant i \leqslant l \\
\varepsilon_{m(i)} \leqslant 4 \varepsilon_{v}, & 0 \leqslant i \leqslant l, m(i) \leqslant v<m(i+1) . \tag{6}
\end{array}
$$

By (5) and (2) we have

$$
\begin{equation*}
\varepsilon_{m(i)} \leqslant\left(1 / 4^{i}\right)\|\varphi\|_{1}, \quad 0 \leqslant i \leqslant l \tag{7}
\end{equation*}
$$

Put

$$
\begin{equation*}
\psi_{m(i)}=\varphi_{m(i)}-\varphi_{m(i} \quad 11, \quad 1 \leqslant i \leqslant l+1, \text { where } \varphi_{m(0)}=0 \tag{8}
\end{equation*}
$$

By (1) and (2) we have

$$
\begin{equation*}
P\left[\left|\psi_{m(i)}\right|\right] \leqslant 2 \varepsilon_{m i} \quad \text { ul, }, \quad 1 \leqslant i \leqslant l+1 \tag{9}
\end{equation*}
$$

Let $L(\psi)$ be the left side of the asserted formula, i.e.,

$$
L(\psi):=\left|P\left[\left(f, S_{n}^{*}\right) \psi\right]-\Phi_{0 . /}[f] P[\psi]\right|
$$

By (8) we have $\varphi=\varphi-\varphi_{j}+\sum_{i=1}^{l+1} \psi_{m(i)}$.
Since $|f| \leqslant 1$ this implies according to (1)

$$
\begin{equation*}
L(\varphi) \leqslant 2 \varepsilon_{i}+\sum_{i-1}^{\prime \prime} L\left(\psi_{m(l)}\right) \tag{10}
\end{equation*}
$$

In the following let c_{v} denote constants only depending on r, s, and k.
Since f is a Berry-Esseen function, we can apply Lemma 2 for each $v=m(i)$. As $1 \leqslant m(i) \leqslant j \leqslant n / 2$ for $i=1, \ldots, l+1$ there consequently exists a constant c_{1} such that

$$
\begin{align*}
& \left|P\left(f S_{n}^{*} \mid \cdot \mathscr{A}_{m(i)}\right)-\Phi_{0 . /}[f]\right| \\
& \quad \leqslant \sqrt{2} \frac{c_{j}}{\sqrt{n}}+c_{1}\left(\left.\frac{m(i)}{n}+\sqrt{\frac{m(i)}{n}} \right\rvert\, S_{m(i)}^{*}\right) . \tag{11}
\end{align*}
$$

As $\psi_{m(i)}$ is $\mathscr{A}_{m(i)}$-measurable, we obtain by (11) for $1 \leqslant i \leqslant l+1$

$$
\begin{align*}
L\left(\psi_{m(i)}\right)= & \left|P\left[\left(P\left(f S_{n}^{*} \mid \Phi_{m(i)}\right)-\Phi_{0, i}[f]\right) \psi_{m(i)}\right]\right| \\
\leqslant & \left(\sqrt{2} \frac{c_{y}}{\sqrt{n}}+c_{1} \sqrt{\frac{m(i)}{n}}\right) P\left[\left|\psi_{m(i)}\right|\right] \\
& +c_{1} \sqrt{\frac{m(i)}{n}} P\left[\left|\psi_{m(i)} S_{m(i)}^{*}\right|\right] \tag{12}
\end{align*}
$$

Put $A_{v}:=\left\{\left|S_{v}^{*}\right|>\rho_{s}^{1 / s} \sqrt{(s-1) k \lg v^{\prime}}\right\}$. For $1 \leqslant i \leqslant l+1$ we have

$$
\begin{aligned}
& P\left[\left|\psi_{m(i)} S_{m(i)}^{*}\right|\right] \\
& \quad \leqslant \rho_{s}^{1 / s} \sqrt{(s-1) k \lg m(i)} P\left[\left|\psi_{m(i)}\right|\right]+\int_{A_{m(i)}}\left|\psi_{m(i)} S_{m(i)}^{*}\right| d P .
\end{aligned}
$$

Hence we obtain from (12) for $1 \leqslant i \leqslant l+1$

$$
\begin{align*}
L\left(\psi_{m(i)}\right) \leqslant & \sqrt{2} \frac{c_{f}}{\sqrt{n}} P\left[\left|\psi_{m(i)}\right|\right] \\
& +2 c_{1} \sqrt{(s-1) k} \frac{\rho_{s}^{1 s}}{\sqrt{n}} \sqrt{m(i) \lg (m(i)+2)} P\left[\left|\psi_{m(i)}\right|\right] \\
& +c_{1} \frac{1}{\sqrt{n}} \sqrt{m(i)} \int_{A_{n(i)}}\left|\psi_{m i)} S_{m(i)}^{*}\right| d P \tag{13}
\end{align*}
$$

Now we prove the three relations

$$
\begin{gather*}
\sum_{i=1}^{l+1} P\left[\left|\psi_{m(i)}\right|\right] \leqslant \frac{8}{3}\|\varphi\|_{1} \tag{14}\\
\sum_{i=1}^{l+1} \sqrt{m(i) \lg [m(i)+2]} P\left[\left|\psi_{m(i)}\right|\right] \leqslant c_{2}\left(\|\varphi\|_{1}+\sum_{r=1}^{i} \sqrt{\frac{\lg (v+2)}{v}} \varepsilon_{v}\right) \tag{15}\\
\sum_{i=1}^{1+1} \sqrt{m(i)} \int_{A_{m(i)}}\left|\psi_{m(i)} S_{m(i)}^{*}\right| d P \leqslant c_{3} \rho_{s}\|\varphi\|_{r} . \tag{16}
\end{gather*}
$$

From (10) and (13)-(16) we obtain the assertion as

$$
\sqrt{2} c, \frac{8}{3}\|\varphi\|_{1} \leqslant 4 c_{f}\|\varphi\|_{r}
$$

and

$$
\begin{aligned}
\rho_{s}^{1 / s} & \left(\|\varphi\|_{1}+\sum_{r=1}^{j} \sqrt{\frac{\lg (v+2)}{v}} \varepsilon_{v}\right) \\
& \leqslant \rho_{s}^{1 / s}\left(\|\varphi\|_{1}+\sqrt{\lg 3} \varepsilon_{1}+2 \sum_{v=2}^{j} \sqrt{\frac{\lg v}{v}} \varepsilon_{v}\right) \\
& \leqslant(1+\sqrt{\lg 3}) \rho_{s}^{1 / s}\|\varphi\|_{1}+2 \rho_{s}^{1 ; s} \sum_{v=2}^{j} \sqrt{\frac{\lg v}{v}} \varepsilon_{v} \\
& \leqslant(1+\sqrt{\lg 3}) \rho_{s}\left(\|\varphi\|_{r}+\sum_{v=2}^{j} \sqrt{\frac{\lg v}{v}} \varepsilon_{v}\right)
\end{aligned}
$$

where the last inequality follows from $\mid \varphi\left\|_{1} \leqslant\right\| \varphi \|_{r}$ and $\rho_{s} \geqslant 1$.
Ad (14). We have by (9) and (7)

$$
\begin{aligned}
\sum_{i=1}^{\prime+1} P\left[\left|\psi_{m(i)}\right|\right] & \leqslant 2 \sum_{i=1}^{\prime+1} \varepsilon_{m(i)}=2 \sum_{i=0}^{1} \varepsilon_{m(i)} \\
& \leqslant 2\|\varphi\|_{i} \sum_{i=0}^{\prime} \frac{1}{4^{4}} \leqslant \frac{8}{3}\|\varphi\|_{1} .
\end{aligned}
$$

Ad (15). Put $a_{\mu}=\sqrt{\mu \lg (\mu+2)}, \quad x_{m(i)}=P\left[\left|\psi_{m(i)}\right|\right], \quad 1 \leqslant i \leqslant l+1$, and $x_{\mu}=0$ elsewhere. Using that a_{μ} / μ is decreasing, we have $a_{\mu} \leqslant \sum_{v=1}^{\mu}\left(a_{v} / v\right)$ and hence

$$
\begin{align*}
\sum_{i=1}^{1+1} & \sqrt{m(i) \lg [m(i)+2]} P\left[\left|\psi_{m(i)}\right|\right] \\
& =\sum_{\mu=1}^{j} x_{\mu} a_{\mu} \leqslant \sum_{\mu=1}^{j} x_{\mu} \sum_{v=1}^{\mu} \frac{a_{v}}{v} \\
& =\sum_{v=1}^{j} \frac{a_{v}}{v} \sum_{\mu=v}^{j} x_{\mu}=\sum_{v=1}^{i} \sqrt{\frac{\lg (v+2)}{v}} \sum_{\mu=v}^{j} x_{\mu} . \tag{17}
\end{align*}
$$

If $m(i-1)<v \leqslant m(i)$ and $1 \leqslant i \leqslant l+1$, we have according to (9) and (5)

$$
\begin{align*}
\sum_{\mu=v}^{i} x_{\mu} & =x_{m(i)}+\cdots+x_{m(l+1)}=P\left[\left|\psi_{m(i)}\right|\right]+\cdots+P\left[\left|\psi_{m(l+1)}\right|\right] \\
& \left.\leqslant 2 \varepsilon_{m(i} 1\right)+\cdots+2 \varepsilon_{m(l)} \\
& \leqslant 2 \varepsilon_{m(i-1)}\left[1+\sum_{\xi=1}^{\infty} \frac{1}{4^{\xi}}\right] \leqslant \frac{8}{3} \varepsilon_{m(i-1)} . \tag{18}
\end{align*}
$$

Hence we have
if $m(i-1)<v<m(i)$ and $1 \leqslant i \leqslant l+1$, then by (18) and (6)

$$
\begin{equation*}
\sum_{\mu=v}^{j} x_{\mu} \leqslant \frac{8}{3} \varepsilon_{m(i, 1)} \leqslant \frac{8}{3} 4 \varepsilon_{v} \tag{19}
\end{equation*}
$$

if $v=m(i)$ and $2 \leqslant i \leqslant l+1$, then by (18)

$$
\begin{align*}
\sqrt{\frac{\lg (v+2)}{v}} \sum_{\mu=v}^{j} x_{\mu} & \leqslant \sqrt{\frac{\lg (v+2)}{v}} \frac{8}{3} \varepsilon_{m(i-1)} \\
& \leqslant \frac{8}{3} \sqrt{\frac{\lg [m(i-1)+2]}{m(i-1)}} \varepsilon_{m(i-1)} ; \tag{20}
\end{align*}
$$

if $v=m(1)$, then by (18) and (2)

$$
\begin{align*}
\sqrt{\frac{\lg (v+2)}{v}} \sum_{\mu=v}^{j} x_{\mu} & \leqslant \sqrt{\frac{\lg (v+2)}{v} \cdot \frac{8}{3} \varepsilon_{0}} \\
& =\frac{8}{3} \sqrt{\frac{\lg (m(1)+2)}{m(1)}}\|\varphi\|_{1} \leqslant c_{4}\|\varphi\|_{1} . \tag{21}
\end{align*}
$$

Now (17), (19), (20), and (21) imply (15). Therefore it remains to prove (16). We prove (16) at first for the case $s>3$ and hence $r<\infty$.

Ad (16). Let r^{\prime} fulfill $1 / r^{\prime}+1 / r=1$ and s^{\prime} fulfill $1 / s^{\prime}+1 / s=1$. As $r>(s-2) /(s-3)$ we have

$$
\begin{equation*}
s>2+\frac{r}{r-1} ; \quad 1<s^{\prime}<r ; r^{\prime}<s-2 . \tag{22}
\end{equation*}
$$

According to (22) there exists $\alpha \in(0,1)$ with

$$
\begin{equation*}
s^{\prime}=\alpha \cdot 1+(1-\alpha) r \quad \text { and hence } \quad \alpha=\frac{1}{r-1}\left(r-s^{\prime}\right) \in(0,1) . \tag{23}
\end{equation*}
$$

Let $1<a<\left(4^{\alpha / s^{\prime}}\right)^{2}$, then $\sqrt{a} / 4^{\alpha i s^{\prime}}<1$.
Now put

$$
\begin{aligned}
& M_{0}=\left\{1 \leqslant i \leqslant l+1: m(i) \leqslant a^{i}\right\} \\
& M_{1}=\left\{1 \leqslant i \leqslant l+1: m(i)>a^{i}\right\} .
\end{aligned}
$$

We prove that

$$
\begin{align*}
D & :=\sum_{i \in M_{0}} \sqrt{m(i)} \int_{A_{m(i)}}\left|\psi_{m(i)} S_{m(i)}^{*}\right| d P \leqslant c_{5} \rho_{s}\|\varphi\|_{r} \tag{16}\\
E & :=\sum_{i \in M_{1}} \sqrt{m(i)} \int_{A_{m(i)}}\left|\psi_{m(i)} S_{m(i)}^{*}\right| d P \leqslant c_{6} \rho_{s}\|\varphi\|_{r} \tag{16}
\end{align*}
$$

Obviously (16) $)_{1}$ and (16) 2 imply (16).
Ad (16) . We have by Hölder and Lemma 7 using the definition of M_{0}

$$
\begin{equation*}
D \leqslant \sum_{i \in M_{0}} \sqrt{m(i)}\left\|S_{m(i)}^{*}\right\|_{s}\left\|\psi_{m(i)}\right\|_{s^{\prime}} \leqslant c_{7} \rho_{s}^{1 / s} \sum_{i \in M_{0}}(\sqrt{a})^{i}\left\|\psi_{m(i)}\right\|_{s^{\prime}} \tag{24}
\end{equation*}
$$

As $1 / \alpha>1$ and $(1 / \alpha)^{\prime}=(1 / \alpha) /(1 / \alpha-1)=1 /(1-\alpha)$, we have according to Hölder's inequality and (23)

$$
P\left[\left|\psi_{m(i)}\right|^{s^{\prime}}\right]=P\left[\left|\psi_{m(i)}\right|^{\alpha}\left|\psi_{m(i)}\right|^{(1-x \mid r}\right] \leqslant P\left[\left|\psi_{m(i)}\right|\right]^{\alpha} P\left[\left|\psi_{m(i)}\right|^{r}\right]^{1-\alpha}
$$

Using (9) and (7) we obtain

$$
\begin{equation*}
\left\|\psi_{m(i)}\right\|_{s^{\prime}} \leqslant\left(\frac{2}{4^{i} i}\|\varphi\|_{1}\right)^{x / s^{\prime}} P\left[\left|\psi_{m(i)}\right|^{r}\right]^{(1-x) / s^{\prime}} \tag{25}
\end{equation*}
$$

By (1) and Lemma 5, we have $\left\|\varphi_{v}\right\|_{r} \leqslant 2\|\varphi\|_{r}$; hence (8) implies

$$
\begin{equation*}
\left\|\psi_{m(i)}\right\|_{r} \leqslant 4\|\varphi\|_{r} . \tag{26}
\end{equation*}
$$

From (25), (26), and (23) we obtain

$$
\begin{align*}
\left\|\psi_{m i s}\right\|_{r^{\prime}} & \leqslant 8^{x / s}\|\varphi\|_{1}^{x / s} \frac{1}{\left(4^{x / s}\right)^{i}}\left(4\|\varphi\|_{r}\right)^{\prime \prime 1} \quad x \omega \\
& \leqslant c_{s}\|\varphi\|_{r}\left(\frac{1}{4^{x i s}}\right)^{i} \tag{27}
\end{align*}
$$

From (24) and (27) we obtain

$$
\begin{equation*}
D \leqslant c_{9} \rho_{s}^{1 w}\|\varphi\|_{r} \sum_{i \in M_{0}}\left(\frac{\sqrt{a}}{4^{x / s}}\right)^{i} \leqslant c_{5} \rho_{s}\|\varphi\|_{r} . \tag{28}
\end{equation*}
$$

Hence we have proved (16).
Ad (16) $)_{2}$. Using the Hölder inequality we obtain from (26)

$$
\begin{align*}
E & \leqslant \sum_{i \in M_{1}} \sqrt{m(i)}\left\|S_{m(i)}^{*} 1_{A_{m(i)}}\right\|_{r}\left\|\psi_{m(i)}\right\|_{r} \\
& \leqslant 4\|\varphi\|_{r} \sum_{i \in M_{1}} \sqrt{m(i)}\left\|S_{m(i)}^{*} 1_{A_{m(i)}}\right\|_{r} . \tag{29}
\end{align*}
$$

We have for $m \geqslant 2-$ as $\int|Y| d P \leqslant \sum_{v=0}^{x} P\{|Y|>v\}-$

$$
\begin{aligned}
& \left\|S_{n, 1}^{*} 1_{i_{m}}\right\|_{r}^{r} \\
& \leqslant \int\left|S_{m}^{*}\right|^{\prime} 1_{| | S_{m \mid}^{*}>\sqrt{1 . s 1 \mid \underline{~ m}}} d P \\
& =[(s-1) \lg m]^{r^{\prime 2}} \int\left|\frac{S_{m}^{*}}{\sqrt{(s-1) \lg m}}\right|^{r} 1_{\left\{\mid S_{m \mid / \sqrt{*}}^{r s} \operatorname{HIg} m>1 ;\right.} d P \\
& \leqslant 2(s-1)^{r^{\prime \prime 2}}(\lg m)^{r / 2} \sum_{v=1}^{\infty} P\left\{\left|\frac{S_{m}^{*}}{\sqrt{(s-1) \lg m}}\right|^{\prime}>v\right\} \\
& =2(s-1)^{r^{2}}(\lg m)^{r^{2}} \sum_{\cdot \in \mathbb{N}} P\left\{\left|S_{m}^{*}\right|>v^{1 / r}(s-1)^{1 / 2} \sqrt{\lg m}\right\}
\end{aligned}
$$

and hence according to Lemma 6

$$
\leqslant c_{10}(\lg m)^{r^{\prime 2} 2} \rho_{s} \sum_{v \in \mathbb{N}} \frac{1}{v^{s / r^{\prime}}(s-1)^{s / 2}(\lg m)^{s / 2}} \frac{1}{m^{(s} 2 / 2} .
$$

Therefore

$$
\left\|S_{m}^{*} 1_{A_{m}}\right\|_{r^{\prime}} \leqslant c_{11} \cdot \rho_{s} \frac{1}{m^{(s-2) / 2}} \frac{1}{(\lg m)^{(s) 1 / 2}}
$$

and hence

$$
\begin{align*}
& \sqrt{m(i)}\left\|S_{m(i)}^{*} 1_{A_{m(i)}}\right\|_{r^{\prime}} \\
& \quad \leqslant c_{12} \rho_{s}^{1 / r^{\prime}} \frac{1}{m(i)^{(1,} 2^{\left.21 / 2 r^{\prime}\right)-1 / 2}} \frac{1}{\left.(\lg m(i))^{(s) r}\right) / r^{r}} \tag{30}
\end{align*}
$$

Let $\delta=\delta(r, s):=(s-2) / 2 r^{\prime}-\frac{1}{2}$. From (29), (30), and $m(i) \geqslant a^{i}$ we obtain

$$
\begin{equation*}
E \leqslant c_{13}\|\varphi\|_{r} p_{v} \sum_{i \in M_{1}} \frac{1}{\left(a^{\delta}\right)^{i}} \frac{1}{i^{\left(s-r^{\prime}\right) / 2 r^{2}}} \tag{31}
\end{equation*}
$$

As $\delta>0$ (here we use for the first time $r>1+1 /(s-3)$) and $a>1$, (31) implies $(16)_{2}$. Thus the result is proven for the case $r<x$.

It remains to prove formula (16) for $r=\infty, s=3$. Therefore, it suffices to prove $(16)_{1}$ and $(16)_{2}$ with

$$
M_{0}=\left\{1 \leqslant i \leqslant l+1: m(i) \leqslant a^{i}\right\}, \quad M_{1}=\left\{1 \leqslant i \leqslant l+1: m(i)>a^{i}\right\}
$$

where $1<a<4^{2 / 3}$. Since (16), follows by similar methods as for the case $r<\infty$ it remains to prove $(16)_{2}$. Since

$$
\int_{A_{m(i)}}\left|\psi_{m(i)} S_{m(i)}^{*}\right| d P \leqslant 2 \int_{A_{m(1)}}\left|S_{m(i)}^{*}\right| d P\|\varphi\|_{x}
$$

we have to prove

$$
\begin{equation*}
\sum_{i \in M_{1}} \sqrt{m(i)} \int_{A_{m(i)}}\left|S_{m(i)}^{*}\right| d P \leqslant c_{6} \rho_{3} \tag{32}
\end{equation*}
$$

For the dimension $k=1$ relation (32) was proven in [4, proof of Theorem 2, formula (15)]. Let $X_{n}:=\left(X_{n, 1}, \ldots, X_{n, k}\right)$, and $S_{m, v}^{*}:=(1 / \sqrt{m})$ $\sum_{n=1}^{m} X_{n, v}$ for $v=1, \ldots, k$. Since $V=I$, we have $\sigma\left(X_{n, v}\right)=1$ and $\rho_{3, v}=P\left[\left|X_{1 . v}\right|^{3}\right] \leqslant \rho_{3}$. Consequently we have for $v=1, \ldots, k$

$$
\sum_{i \in M_{1}} \sqrt{m(i)} \int\left|S_{m(i) . v}^{*}\right| 1_{\left\{\left|S_{m, 1, y}^{*}\right|>p_{3, i}^{1,3} \sqrt{2 \lg m(i)}\right\}} d P \leqslant c_{14} \rho_{3, v}
$$

Hence (32) follows from

$$
\left|S_{m(i)}^{*}\right| 1_{A m(t)} \leqslant \sqrt{k} \sum_{v=1}^{k} \mid S_{m(i), v}^{*} 1_{\left\{\left|S_{m,(1),}^{*}\right|>p_{3, i}^{1,3}, \sqrt{2 \lg m(i)\}}\right.}
$$

using $\rho_{3 . v} \leqslant \rho_{3}$.
This d_{1}-Inequality (A) directly implies Theorem 4: Apply (A) to $j=j(n)=[n / \lg n]$.

The following d_{r}-Inequality implies Theorem 7: Put $j=j(n)=[n / 2]$.
(B) d_{r}-Inequality. Let $X_{n} \in \mathscr{L}_{s}\left(\mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix V, where $3 \leqslant s<\infty$; and let $\varphi \in \mathscr{C}_{r}(\mathbb{R})$ where $1 / s+1 / r=1$. Let $f: \mathbb{R}^{k} \rightarrow[-1,1]$ be a Berry-Esseen function. Then there exists a constant $c=c(s, k)$ such that for all $j \leqslant n / 2$

$$
\begin{aligned}
& \left|P\left[\left(f S_{n}^{*}\right) \varphi\right]-\Phi_{0 . l}[f] P[\varphi]\right| \\
& \quad \leqslant \frac{c \rho_{s}+4 c_{f}}{\sqrt{n}}\left(\|\varphi\|_{r}+\sum_{r=2}^{j} \frac{1}{\sqrt{v}} d_{r}\left(\varphi, \alpha_{v}\right)\right)+2 d_{r}\left(\varphi, \alpha_{j}\right)
\end{aligned}
$$

where c_{f} is the constant occurring in the definition of a Berry-Esseen function.

Proof. The proof runs similarly as the proof of the d_{1}-Inequality (A). Let $P\left[X_{1}\right]=0, V=I$.

There exist \mathscr{A}_{v}-measurable $\varphi_{1}: \Omega \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
\left\|\varphi-\varphi_{v}\right\|_{r}=d_{r}\left(\varphi, \mathscr{L}_{v}\right)=: \delta_{r}, \quad v \in \mathbb{N} \tag{1}
\end{equation*}
$$

Let j and n with $j \leqslant n / 2$ be fixed. Put

$$
\begin{equation*}
m(0):=0, \quad \varepsilon_{0}:=\|\varphi\|_{r} . \tag{2}
\end{equation*}
$$

Define $m(i)$ as in (A). Then (5) (7) of (A) hold with $\|\varphi\|_{r}$ instead of $\|\varphi\|_{1}$. Define $\psi_{m(i)}$ and $L(\psi)$ as in (A). Then (9)-(12) hold, too. To prove the assertion it suffices to prove

$$
\begin{align*}
\sum_{i=1}^{l+1} P\left[\left|\psi_{m(i)}\right|\right] & \leqslant \frac{8}{3}\|\varphi\|_{r} \tag{14}\\
\sum_{i=1}^{l+1} \sqrt{m(i)} P\left[\left|\psi_{m(i)}\right|\right] & \leqslant \frac{40}{3}\left(\|\varphi\|_{r}+\sum_{v=1}^{j} \frac{\varepsilon_{v}}{\sqrt{v}}\right) \tag{15}\\
\sum_{i=1}^{l+1} \sqrt{m(i)} P\left[\left|\psi_{m(i)} S_{m(i)}^{*}\right|\right] & \leqslant \rho_{s}\left(\|\varphi\|_{r}+\sum_{v=1}^{j} \frac{\varepsilon_{v}}{\sqrt{v}}\right) . \tag{16}
\end{align*}
$$

The proof of $(14)^{\prime}$ runs as the proof of (14) in (A). To show (15)' it suffices to prove

$$
\begin{equation*}
\sum_{i=1}^{l+1} \sqrt{m(i)}\left\|\psi_{m(i)}\right\|_{r} \leqslant \frac{40}{3}\left(\|\varphi\|_{r}+\sum_{r=1}^{i} \frac{\varepsilon_{v}}{\sqrt{v}}\right) . \tag{15}
\end{equation*}
$$

The proof of (15)" runs as the proof of (15) in (A), if we put $a_{\mu}=\sqrt{\mu}$. $x_{m(i)}=\left\|\psi_{m(i)}\right\|_{r}$.

Furthermore we obtain using the Hölder inequality and Lemma 7

$$
\begin{aligned}
\sum_{i=1}^{l+1} \sqrt{m(i)} P\left[\left|\psi_{m(i)} S_{m(i)}^{*}\right|\right] & \leqslant \sum_{i=1}^{l+1} \sqrt{m(i)}\left\|\psi_{m(i)}\right\|_{r}\left\|S_{m(i)}^{*}\right\|_{s} \\
& \leqslant c \rho_{s} \sum_{i=1}^{l+1} \sqrt{m(i)}\left\|\psi_{m(i)}\right\|_{r}
\end{aligned}
$$

Hence (16)' follows from (15)".

4. Proof of the Examples

In this section we give the proofs of the five examples of Section 2.
Proof of Example 1. Let $g(t)=\left(e^{t^{2} / 2} / t(\lg t)^{2}\right) 1_{[2 . x)}(t), t \in \mathbb{R}$, and put $\varphi=g \subset X_{1}$. Then $0 \leqslant \varphi \in \mathscr{L}_{1}(\Omega, \mathscr{A}, P, \mathbb{R})$ and $d_{1}\left(\varphi, \mathscr{A}_{n}\right)=0$ for all $n \in \mathbb{N}$. It remains to prove (ii). Using Lemma 1 we obtain for $n \geqslant 3$

$$
\begin{aligned}
\mid P\left(S_{n}^{*}\right. & \leqslant 0, \varphi)-\Phi(0) P[\varphi] \mid \\
& =\left|\int g \circ X_{1} P\left(S_{n}^{*} \leqslant 0 \mid \mathscr{A}_{1}\right) d P-\int \Phi(0) g \circ X_{1} d P\right| \\
& =\left|\int g \circ X_{1}\left(\Phi\left(-\frac{1}{\sqrt{n-1}} X_{1}\right)-\Phi(0)\right) d P\right| \\
& =\int_{2}^{\infty} g(t)\left(\Phi(0)-\Phi\left(-\frac{1}{\sqrt{n-1}} t\right)\right) P \circ X_{1}(d t) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{2}^{\infty} \frac{1}{t(\lg t)^{2}}\left(\Phi(0)-\Phi\left(-\frac{1}{\sqrt{n-1}} t\right)\right) d t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{2 / \sqrt{n-1}}^{x} \frac{1}{u(\lg u \sqrt{n-1})^{2}}(\Phi(0)-\Phi(-u)) d u \\
& \geqslant c_{1} \int_{2}^{3} \frac{1}{u(\lg 3 \sqrt{n-1})^{2}} d u \geqslant c \frac{1}{(\lg n)^{2}} .
\end{aligned}
$$

Proof of Example 5. There exist i.i.d. nonatomic $X_{n}, n \in \mathbb{N}$, with variance 1, such that $P=X_{1}=P \circ\left(-X_{1}\right)$ and $P\left\{X_{1}>t\right\} \sim 1 / t^{*}(\lg t)^{2}$ for $t \rightarrow \infty$. Then $X_{n} \in \mathscr{L}_{s}(\mathbb{R})$ and $P\left[X_{n}\right]=0$. As $r<1+1 /(s-3)$ we have $s<2+r /(r-1)$ and hence there exists δ with

$$
\begin{equation*}
\frac{1}{2}<\delta<1 \quad \text { and } \quad \delta(s-r /(r-1))<1 \tag{1}
\end{equation*}
$$

By (1) there exists τ_{2} with

$$
\begin{gather*}
\frac{1}{2}<\tau_{2}<\delta \tag{2}\\
s \delta(1-r)+\left(\tau_{2}+1\right) r>1 \tag{3}
\end{gather*}
$$

Then by (2)

$$
\begin{equation*}
\tau_{1}:=\tau_{2} / 2 \delta<\frac{1}{2} . \tag{4}
\end{equation*}
$$

Let $\varphi_{v}:=(\lg v)^{2} v^{w)} \quad\left(t_{2}+{ }^{11} 1_{\left.x_{v}>w^{*}\right)}\right.$ and put $\varphi=\sum_{v \in \infty} \varphi_{v}$. At first we show that

$$
\begin{equation*}
\varphi \in \mathscr{L}_{r}(\mathbb{R}) . \tag{5}
\end{equation*}
$$

Since $\varphi_{r} \geqslant 0, v \in \mathbb{N}$, are independent and $s \dot{\delta}-\left(\tau_{2}+1\right) \geqslant 0$, according to [2, Lemma 1, p. 358], relation (5) is shown if we prove

$$
\begin{equation*}
\sum_{v \in f_{i}} P\left[\varphi_{v}^{\prime}\right]<\varkappa . \tag{6}
\end{equation*}
$$

As

$$
\begin{aligned}
P\left[\varphi_{v}^{r}\right] & =(\lg v)^{2 r} \frac{1}{\left.v^{\left(\tau_{2}+1\right.} \cdot s\right) r} P\left\{X_{v}>v^{r}\right\} \\
& \leqslant c_{1}(\lg v)^{2 r}=\frac{1}{v^{w s(1)} r+1 \tau_{2}+1 l^{r}}
\end{aligned}
$$

relation (3) implies (6).
Furthermore we have

$$
d_{1}\left(\varphi, \alpha_{n}\right) \leqslant \sum_{v>n} P\left[\varphi_{v}\right] \leqslant c_{1} \sum_{v>n} \frac{1}{v^{r+1}} \leqslant c_{2} n
$$

i.e., (i) holds. It remains to prove (ii). As $P X_{1}=P\left(-X_{1}\right)$ and $P X_{1}$ is nonatomic Lemma 8 yields

$$
\begin{equation*}
\Phi(0) P\left[\varphi_{v}\right]-P\left(S_{n}^{*} \leqslant 0, \varphi_{v}\right) \geqslant 0 \quad \text { for } \quad v, n \in \mathbb{N} . \tag{7}
\end{equation*}
$$

Now we show that for some $v_{0} \in \mathbb{N}$ there holds

$$
\begin{align*}
\Phi(0) & P\left[\varphi_{v}\right]-P\left(S_{n}^{*} \leqslant 0, \varphi_{v}\right) \\
& \geqslant c_{3} \frac{1}{\sqrt{n}} \frac{1}{v^{2}+1} \quad \text { for } \quad v_{0} \leqslant v \leqslant n^{2 n} . \tag{8}
\end{align*}
$$

To prove (8) we apply Lemma 3 with $k=1, a=r^{\prime}$, and $B=\left\{S_{1}^{*} \geqslant a\right\}=$ $\left\{X_{1} \geqslant a\right\}$ and we obtain for all v with $c\left(P, X_{1}\right)^{1 / \delta} \leqslant v \leqslant n^{1,2 j}$

$$
\begin{aligned}
& \Phi(0) P\left[\varphi_{v}\right]-P\left(S_{n}^{*} \leqslant 0, \varphi_{v}\right) \\
& =(\lg v)^{2} v^{* j} \quad\left(\tau_{2}+{ }^{\prime \prime}\right)\left(\Phi(0) P\left\{X_{1}>v^{\prime}\right\}-P\left\{S_{n}^{*} \leqslant 0, X_{1}>v^{\prime \prime}\right\}\right) \\
& \geqslant c(\lg v)^{2} v^{\text {si }}\left(\tau_{2}+\| \frac{1}{\sqrt{n}} v^{j} P\left\{X_{1}>v^{\infty}\right\}\right. \text {. }
\end{aligned}
$$

Since $P\left\{X_{1}>t\right\} \sim 1 / t^{*}(\lg t)^{2}$ this implies for $v_{0} \leqslant v \leqslant n^{1 / 2 \delta}$ with appropriate $v_{0} \in \mathbb{N}$

$$
\geqslant c_{3} \frac{1}{\sqrt{n}} \frac{1}{v^{r_{2}+1}}
$$

i.e., (8) is shown.

As $0<\tau_{2}+1-\delta<1$ by (1), (2) we obtain from (7) and (8) for sufficiently large n

$$
\begin{aligned}
\Phi(0) P[\varphi]-P\left(S_{n}^{*} \leqslant 0, \varphi\right) & \geqslant c_{3} \frac{1}{\sqrt{n}} \sum_{v=v_{0}}^{n^{12 j}} \frac{1}{v^{\tau_{2}+1-\delta}} \\
& \geqslant c_{4} \frac{1}{\sqrt{n}}\left(n^{1 / 2 \delta}\right)^{\delta-\tau_{2}} \underset{(4)}{=} c_{4} n^{-\tau_{1}}
\end{aligned}
$$

i.e., (ii) is fulfilled.

Proof of Example 8. Let $a=c\left(P \circ X_{1}\right)$, where $c\left(P \circ X_{1}\right)$ is the constant occurring in Lemma 3. Let $\varphi=\varphi_{\alpha, \beta}:=\sum_{v \in \mathbb{N}} \varphi_{v}$ where $\varphi_{v}=\left(1 / v^{1+x}\right)(\lg v)^{\beta}$ $1_{\left\{S_{r}^{*} \geqslant a\right\}}$. Then $\varphi \in \mathscr{L}_{r}$ and

$$
\begin{align*}
d_{r}\left(\varphi, \mathscr{A}_{n}\right) & \leqslant\left\|\sum_{v>n} \varphi_{v}\right\|_{r} \leqslant \sum_{v>n}\left\|\varphi_{v}\right\|_{r} \\
& \leqslant \sum_{v>n} \frac{1}{v^{1+x}}(\lg v)^{\beta}=O\left(n^{x}(\lg n)^{\beta}\right) . \tag{1}
\end{align*}
$$

Hence (i) is fulfilled.
Applying Lemma 3 to $v \leqslant n / 2 \wedge n / a^{2}$ and $B=\left\{S_{v}^{*} \geqslant a\right\} \in \mathscr{A}_{v}$, we obtain

$$
\begin{aligned}
\Phi(0) & P\left[\varphi_{v}\right]-P\left(S_{n}^{*} \leqslant 0, \varphi_{v}\right) \\
& =\frac{1}{v^{1+x}}(\lg v)^{\beta}\left(\Phi(0) P(B)-P\left(S_{n}^{*} \leqslant 0, B\right)\right) \\
& \geqslant c_{1} \frac{1}{v^{1+x}}(\lg v)^{\beta} \sqrt{\frac{v}{n}} a P\left\{S_{v}^{*} \geqslant a\right\} .
\end{aligned}
$$

Hence there exists $c_{2}=c_{2}\left(P \circ X_{1}\right)$ and $v_{0}=v_{0}\left(P \circ X_{1}\right) \in \mathbb{N}$ such that

$$
\Phi(0) P\left[\varphi_{v}\right]-P\left(S_{n}^{*} \leqslant 0, \varphi_{v}\right) \geqslant c_{2} \frac{1}{\sqrt{n}} \frac{1}{v^{1 / 2+\alpha}}(\lg v)^{\beta}
$$

if $v_{0} \leqslant v \leqslant\left[n / 2 \wedge n / a^{2}\right]=: j(n)$. This implies for sufficiently large n

$$
\begin{array}{rlr}
\sum_{v=v_{0}}^{\mu(n)} & \left(\Phi(0) P\left[\varphi_{v}\right]-P\left(S_{n}^{*} \leqslant 0, \varphi_{v}\right)\right) \\
& \geqslant c_{3} n^{-1 / 2} \lg \lg n ; & \\
\geqslant=\frac{1}{2}, \beta=-1 \tag{2}\\
\geqslant c_{3} n^{-1 / 2}(\lg n)^{\beta+1} ; & \alpha=\frac{1}{2}, \beta>-1 \\
\geqslant c_{3} n^{-x}(\lg n)^{\beta} ; & 0<\alpha<\frac{1}{2} .
\end{array}
$$

As $P \circ X_{1}=P \circ\left(-X_{1}\right)$ and $P \circ X_{1}$ is nonatomic we have by Lemma 8 $P\left(S_{n}^{*} \leqslant 0, S_{v}^{*} \geqslant a\right) \leqslant \frac{1}{2} P\left(S_{v}^{*} \geqslant a\right)$ and therefore

$$
\begin{equation*}
\Phi(0) P\left[\varphi_{v}\right]-P\left(S_{n}^{*} \leqslant 0, \varphi_{v}\right) \geqslant 0 \text { for all } v, n \in \mathbb{N} . \tag{3}
\end{equation*}
$$

Hence (2) and (3) directly imply (ii).
Proof of Example 9. Let $X_{n}, n \in \mathbb{N}$, be i.i.d. such that $P \circ X_{1}$ has density $p(t)=\left(c_{1} /|t|^{s+1}[\lg |t|]^{2}\right) 1_{[2, x)}(|t|)$ with respect to the Lebesgue measure. Then $X_{n} \in \mathscr{L}_{s}(\mathbb{R})$ and $P\left[X_{n}\right]=0, n \in \mathbb{N}$. Let $g(t)=t^{s / r} 1_{[2, \infty)}(t)$ and put $\varphi=g \circ X_{1}$. Then $0 \leqslant \varphi \in \mathscr{L}_{r}(\mathbb{R}) \quad$ and $\quad d_{r}\left(\varphi, \mathscr{A}_{n}\right)=0, n \in \mathbb{N}$. Put $\tau_{1}:=\frac{1}{2} \cdot(s-s / r)$, then $0<\tau_{1}<\frac{1}{2}$. Hence it suffices to prove

$$
\begin{equation*}
\Phi(0) P[\varphi]-P\left(S_{n}^{*} \leqslant 0, \varphi\right) \geqslant c \frac{n^{-\tau_{1}}}{(\lg n)^{2}} \text { for sufficiently large } n . \tag{1}
\end{equation*}
$$

Using the Theorem of Berry-Esseen and Lemma 1, we have for sufficiently large n

$$
\begin{aligned}
\Phi(0) & P[\varphi]-P\left(S_{n}^{*} \leqslant 0, \varphi\right) \\
& =\int \Phi(0) g\left(X_{1}\right) d P-\int g\left(X_{1}\right) P\left(S_{n}^{*} \leqslant 0 \mid \mathscr{A}_{1}\right) d P \\
& =\int \Phi(0) g\left(X_{1}\right) d P-\int g\left(X_{1}\right) F_{n-1}\left(-\frac{1}{\sigma \sqrt{n-1}} X_{1}\right) d P \\
& \geqslant \int_{2}^{\infty}\left[\Phi(0)-\Phi\left(-\frac{1}{\sigma \sqrt{n-1}} t\right)\right] g(t)\left(P \circ X_{1}\right)(d t)-\frac{c_{2}}{\sqrt{n}} \\
& \geqslant c_{1} \int_{2}^{x}\left[\Phi(0)-\Phi\left(-\frac{1}{\sigma \sqrt{n-1}} t\right)\right] \frac{t^{s / r-1+1)}}{[\lg t]^{2}} d t-\frac{c_{2}}{\sqrt{n}} \\
& \geqslant c_{3}(n-1)^{1 / 2+1 / 2 \cdot[s / r \cdot(s+1)]} \int_{2}^{\infty} \frac{u^{s / r-(s+1)}}{[\lg |u| \sqrt{n-1}]^{2}} d u-\frac{c_{2}}{\sqrt{n}} \\
& \geqslant c_{4} n^{-\tau} \int_{2}^{3} \frac{u^{s / r-(s+1)}}{[\lg (3 \sqrt{n-1})]^{2}} d u-\frac{c_{2}}{\sqrt{n} \geqslant c \frac{n^{-\tau_{1}}}{(\lg n)^{2}}},
\end{aligned}
$$

i.e., (1) is proved.

5. Auxiliary Lemmata

In this section we collect all lemmata which are needed for the proofs of the results and examples of Sections 3 and 4.

1. Lemma. Let $X_{n} \in \mathscr{L}_{3}\left(\mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with positive definite covariance matrix. Then we have for $x \in \mathbb{R}^{k}$ and $v, n \in \mathbb{N}$ with $v<n$ that

$$
\omega \rightarrow F_{n} v\left(\sqrt{\frac{n}{n-v}} x-\sqrt{\frac{v}{n-v}} S_{v}^{*}(\omega)\right)
$$

is a version of $P\left(S_{n}^{*} \leqslant x \mid, \mathscr{A}_{v}\right)$.
Proof. Direct computation.
2. Lemma. Let $X_{n} \in \mathscr{L}_{3}\left(\mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with covariance matrix I. Let $f: \mathbb{R}^{k} \rightarrow[-1,1]$ be a Berry-Esseen function. Then there exists a constant $c=c(k)$ such that for $v<n$

$$
\left|P\left(f \circ S_{n}^{*} \mid \mathscr{A}_{v}\right)-\Phi_{0 . I}[f]\right| \leqslant \frac{c_{f}}{\sqrt{n-v}}+c\left[\frac{v}{n}+\sqrt{\frac{v}{n-v}}\left|S_{v}^{*}\right|\right]
$$

Proof. According to Lemma 1 we have that for $v<n$

$$
\omega \rightarrow F_{n-v}\left(\sqrt{\frac{n}{n-v}} x-\sqrt{\frac{v}{n-v}} S_{v}^{*}(\omega)\right)
$$

is a version of $P\left(S_{n}^{*} \leqslant x \mid \mathscr{A}_{v}\right)$. Therefore

$$
P\left(f \circ S_{n}^{*} \mid \mathscr{A}_{v}\right)=\int f(x) F_{n-v}\left(\sqrt{\frac{n}{n-v}} d x-\sqrt{\frac{v}{n-v}} S_{v}^{*}\right) .
$$

Hence we obtain

$$
\begin{aligned}
& \mid P(f \circ\left.S_{n}^{*} \mid \mathscr{A}_{v}\right)-\Phi_{0, I}[f] \mid \\
& \leqslant \left\lvert\, \int f(x)\left(F_{n-v}\left(\sqrt{\frac{n}{n-v}} d x-\sqrt{\frac{v}{n-v}} S_{v}^{*}\right)\right.\right. \\
&\left.-\Phi_{0, I}\left(\sqrt{\frac{n}{n-v}} d x-\sqrt{\frac{v}{n-v}} S_{v}^{*}\right)\right) \mid \\
&+\left|\int f(x)\left(\Phi_{0, I}\left(\sqrt{\frac{n}{n-v}} d x-\sqrt{\frac{v}{n-v}} S_{v}^{*}\right)-\Phi_{0, I}(d x)\right)\right| \\
&=\left\lvert\, \int f\left(\sqrt{\left.\frac{n-v}{n} x+\sqrt{\frac{v}{n}} S_{v}^{*}\right)\left(F_{n \ldots v}-\Phi_{0, I}\right) d x \mid}\right.\right. \\
& \quad+\left|\int\left[f\left(\sqrt{\frac{n-v}{n}} x+\sqrt{\frac{v}{n}} S_{v}^{*}\right)-f(x)\right] \Phi_{0 . I}(d x)\right| .
\end{aligned}
$$

Since f is a Berry-Esseen function Lemma 4 implies

$$
\leqslant \frac{c_{f}}{\sqrt{n-v}}+c\left[1-\sqrt{\frac{n-v}{n}}+\sqrt{\frac{v}{n-v}}\left|S_{v}^{*}\right|\right]
$$

i.e., the assertion.
3. Lemma. Let $X_{n} \in \mathscr{L}_{3}(\mathbb{R}), n \in \mathbb{N}$, be i.i.d. with positive variance. Then there exist a universal constant c and a constant $c\left(P \circ X_{1}\right)$ such that

$$
\Phi(0) P(B)-P\left(S_{n}^{*} \leqslant 0, B\right) \geqslant c \sqrt{k / n} a P(B)
$$

if $a \geqslant c\left(P \circ X_{1}\right), B \in \mathscr{A}_{k}$ with $B \subset\left\{S_{k}^{*} \geqslant a\right\}$ and $k a^{2} \leqslant n, 1 \leqslant k \leqslant n / 2$.
Proof. The proof runs similar to the proof of Lemma 4 in [4].
4. Lemma. There exists a constant $c=c(k)$ such that for each measurable function $f: \mathbb{R}^{k} \rightarrow[-1,+1]$

$$
\left|\int(f(a x+b)-f(x)) \Phi_{0 . t}(d x)\right| \leqslant c\left[(1-a)+\frac{|b|}{a}\right]
$$

for $0<a \leqslant 1, b \in \mathbb{R}^{k}$.
Proof. It suffices to show that

$$
\begin{gather*}
\left|\int(f(a x)-f(x)) \Phi_{0, I}(d x)\right| \leqslant c(1-a) \quad \text { for } 0<a \leqslant 1 \tag{1}\\
\left|\int(f(x+b)-f(x)) \Phi_{0, I}(d x)\right| \leqslant c|b| \tag{2}
\end{gather*}
$$

Ad (1). W.l.g. $a \geqslant \frac{1}{2}$ (choose $c \geqslant 4$). We have

$$
\int f(a x) \Phi_{0, I}(d x)=\frac{1}{a^{k}} \int f(y) \varphi_{0, I}\left(\frac{1}{a} y\right) d y
$$

and hence

$$
\left|\int(f(a x)-f(x)) \Phi_{0,1}(d x)\right| \leqslant \int\left|\frac{1}{a^{k}} \varphi_{0, I}\left(\frac{1}{a} y\right)-\varphi_{0, I}(y)\right| d y
$$

Therefore it suffices to find constants c_{1}, c_{2} such that for $\frac{1}{2} \leqslant a \leqslant 1, y \in \mathbb{R}^{k}$

$$
\begin{equation*}
\left|\frac{1}{a^{k}} \varphi_{0, I}\left(\frac{1}{a} y\right)-\varphi_{0, I}(y)\right| \leqslant(1-a)\left[c_{1}+c_{2}|y|^{2}\right] \varphi_{0, I}(y) \tag{3}
\end{equation*}
$$

Let $y \in \mathbb{R}^{k}$ be fixed and put

$$
g(a)=\frac{1}{a^{k}} \varphi_{0, I}\left(\frac{1}{a} y\right)-\varphi_{0, I}(y) \quad \text { for } \quad \frac{1}{2} \leqslant a \leqslant 1
$$

As $g(1)=0$, we obtain from the mean value theorem

$$
\begin{equation*}
|g(a)| \leqslant(1-a) \sup _{1 / 2 \leqslant \xi \leqslant 1}\left|g^{\prime}(\xi)\right| . \tag{4}
\end{equation*}
$$

Furthermore

$$
\begin{align*}
g^{\prime}(\xi) & =-\frac{k}{\xi^{k+1}} \varphi_{0, I}\left(\frac{1}{\xi} y\right)+\frac{1}{\xi^{k}}\left\langle\varphi_{0, I}^{\prime}\left(\frac{1}{\xi} y\right),-\frac{1}{\xi^{2}} y\right\rangle \\
& =-\frac{k}{\xi^{k+1}} \varphi_{0, I}\left(\frac{1}{\xi} y\right)+\frac{1}{\xi^{k+3}} \varphi_{0, I}\left(\frac{1}{\xi} y\right)|y|^{2} \tag{5}
\end{align*}
$$

Now (4) and (5) imply (3).
Ad (2). Let w.l.g. $|b| \leqslant 1$. We have

$$
\begin{align*}
\left|\int[f(x+b)-f(x)] \Phi_{0, I}(d x)\right| & =\left|\int f(x)\left[\varphi_{0, I}(x-b)-\varphi_{0, I}(x)\right] d x\right| \\
& \leqslant \int\left|\varphi_{0, I}(x-b)-\varphi_{0, I}(x)\right| d x \tag{6}
\end{align*}
$$

Using the mean value theorem and $e^{-(1 / 2)|z|^{2}} \leqslant e^{-(1 / 2)(|x|-1)^{2}}$, for $|x|>1$ and $z \in[x-b, x]$, we obtain

$$
\begin{align*}
\left|\varphi_{0, I}(x-b)-\varphi_{0, I}(x)\right| & \leqslant|b| \sup _{z \in[x-b, x]}\left|\varphi_{0, I}^{\prime}(z)\right| \\
& =|b| \sup _{z \in[x-b, x]}|z| \varphi_{0, I}(z) \\
& \leqslant|b|(|x|+1) \sup _{z \in[x-b, x]} \varphi_{0, I}(z) \\
& \leqslant|b|(|x|+1)\left\{1_{E}(x)+e^{-(1 / 2)(|x|-1)^{2}}\right\} \tag{7}
\end{align*}
$$

where $E=\left\{z \in \mathbb{R}^{k}:|z| \leqslant 1\right\}$. Now (6) and (7) imply (2).
5. Lemma. Let $1<r<\infty$ and $\varphi \in \mathscr{L}_{r}(\mathbb{R})$. Let $\mathscr{A}_{0} \subset \mathscr{A}$ be a sub- σ-field of \mathscr{A} and φ_{0} an \mathscr{A}_{0}-measurable function with

$$
\left\|\varphi-\varphi_{0}\right\|_{1}=d_{1}\left(\varphi, \mathscr{A}_{0}\right) .
$$

Then

$$
\left\|\varphi_{0}\right\|_{r} \leqslant 2\|\varphi\|_{r}
$$

Proof. Let $Q: \Omega \times \mathscr{A}_{0} \rightarrow[0,1]$ be a regular conditional distribution of φ given \mathscr{A}_{0}. It is well known that $\varphi_{0}(\omega)$ is for P-a.a. $\omega \in \Omega$ a median of the p-measure $Q(\cdot, \omega) \mid \mathscr{B}$ (see [5]). Hence

$$
\left|\varphi_{0}(\omega)\right| \leqslant 2 \int|x| Q(d x, \omega) \quad P \text {-a.e. }
$$

Then the convexity inequality implies

$$
\begin{equation*}
\left|\varphi_{0}(\omega)\right|^{r} \leqslant 2^{r} \int|x|^{r} Q(d x, \omega) \quad P \text {-a.e. } \tag{1}
\end{equation*}
$$

As $\int\left(\int|x|^{r} Q(d x, \omega)\right) P(d \omega)=\int|\varphi(\omega)|^{r} P(d \omega)$, integration of (1) yields the assertion.
6. Lemma. Let $s \geqslant 3$ and $X_{n} \in \mathscr{L}_{s}\left(\mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with $P\left(X_{1}\right)=0$ and covariance matrix I. Then there exists a constant $c=c(s, k)$ such that

$$
P\left\{\left|S_{n}^{*}\right| \geqslant t\right\} \leqslant c \frac{\rho_{s}}{t^{s} n^{s-2) / 2}} \quad \text { for all } t>0 \text { with } t^{2} \geqslant(s-1) \lg n .
$$

Proof. Apply Theorem 17.11 of [1] to i.i.d. random variables with $\operatorname{Cov} X_{j}=I$ and $\delta=1$.
7. Lemma. Let $s \geqslant 2$ and let $X_{n} \in \mathscr{L}_{s}\left(\mathbb{R}^{k}\right), n \in \mathbb{N}$, be i.i.d. with $P\left[X_{1}\right]=0$ and covariance matrix I. Then there exists a constant $c=c(s, k)$ such that

$$
\left\|S_{n}^{*}\right\|_{s} \leqslant c \rho_{s}^{1 / s}
$$

Proof. For $k=1$ use Theorem 2 of [2, p. 356] and apply the proof of Corollary 2 of [2, p.357]. The case $k>1$ follows directly from the case $k=1$.
8. Lemma. Let $X_{n} \in \mathscr{L}_{3}(\mathbb{R})$ be i.i.d. with positive variance such that $P \circ X_{1}=P \circ\left(-X_{1}\right)$ and $P \circ X_{1}$ is nonatomic. Then we have for all $a>0$ and $r, n \in \mathbb{N}$

$$
P\left(S_{n}^{*} \leqslant 0, S_{r}^{*} \geqslant a\right) \leqslant \frac{1}{2} P\left(S_{r}^{*} \geqslant a\right)
$$

Proof. It suffices to show

$$
P\left(S_{n}^{*} \leqslant 0, S_{r}^{*} \geqslant a\right) \leqslant P\left(S_{n}^{*}>0, S_{r}^{*} \geqslant a\right)
$$

The case $r=n$ is trivial. The cases $r<n$ and $r>n$ follow by using Lemma 1 .

References

1. R. N. Bhattacharya and R. R. Rao, "Normal Approximation and Asymptotic Expansions," Wiley, New York, 1976.
2. Y. S. Chow and H. Teicher, "Probability Theory," Springer-Verlag, New York, 1978.
3. D. Landers and L. Rogge, Inequalities for conditioned normal approximations, Ann. of Probab. 5 (1977), 595-600.
4. D. Landers and L. Rogge, Exact approximation orders in the conditional central limit theorem, Z. Wahrsch. Verw. Gebiete 66 (1984), 227-244.
5. T. Shintani and T. Ando, Best approximants in L_{1}-spaces, Z. Wahrsch. Verw. Gebiete 33 (1975), 33-39.
